
A Domain-Specific Language For Specifying

Requirement Patterns for Model-Driven Software

Development

1st David Mosquera

School of Engineering,

Institute, of Computer Sciences

ZHAW Zurich University of Applied Sciences

Winterthur, Switzerland

UPV Universitat Politècnica de València

Valencia, Spain

mosq@zhaw.ch

2nd Marcela Ruiz

School of Engineering,

Institute of Computer Sciences

ZHAW Zurich University of Applied Sciences

Winterthur, Switzerland

ruiz@zhaw.ch

3rd Anastassios Martakos

School of Engineering,

Institute of Computer Sciences

ZHAW Zurich University of Applied Sciences

Winterthur, Switzerland
anastassios.martakos@outlook.com

Abstract—Requirement patterns have emerged in

requirements engineering as a way to streamline requirements

specification by promoting reuse. However, existing approaches in

the literature have primarily focused on defining requirement

patterns for reuse within textual requirement documents,

overlooking software models. Meanwhile, other model-driven

software development (MDSD) approaches that attempt to reuse

software models as patterns for requirements specification are tied

to specific modelling languages, limiting their applicability. In this

paper, we introduce the LEMON specification language: a

domain-specific language designed to specify and reuse

requirement patterns for MDSD tools. The LEMON language

supports the specification of patterns, templates, and the

integration in any MDSD tools' metamodels, allowing

requirements patterns customisation and their integration in

MDSD environments. We present an Extended Backus-Naur

Form (EBNF) of the LEMON language exemplified by means of

an industry-inspired example. Moreover, we describe the

implementation of an execution environment to show the

integration of the LEMON language in an MDSD tool. We

conclude with our vision and outline future steps for the evolution

of the LEMON language to streamline requirements specification

in MDSD tools using requirement patterns.

Keywords—Requirement Patterns, LEMON, Model-driven

software development, Requirement specification

I. INTRODUCTION

In requirements engineering, the elicitation and specification
of software requirements are essential but often time-consuming
and error-prone activities, resulting in incomplete and missing
software requirements [1]. To address these challenges,
requirement patterns have been proposed as reusable solutions
for recurring stakeholder needs [2], [3]. These patterns aim to
improve consistency, reduce specification effort, and promote
best practices by capturing validated structures for both
functional and non-functional requirements.

Some authors [4], [5], [6], [7], [8], [9], [10] have proposed
approaches for reusing requirement patterns for specifying
requirements as textual requirement documents, limiting its
applicability in MDSD as software models are the main artefact
instead of text descriptions. Other authors [11], [12], [13], [14],

[15], [16] have proposed approaches to reuse requirement
patterns to generate software models for MDSD. However, these
approaches are tied to specific modelling languages, MDSD
tools, or domains. In our previous work, we introduced the
LEMON framework [15], supporting the reuse of requirement
patterns in MDSD through black-boxed modules and assistant-
based integration. However, this prior work did not define how
to specify the requirement patterns and how to execute them.

Thus, in this paper we present the LEMON language—a
domain-specific language (DSL) for specifying reusable
requirement patterns in a tool-agnostic, model-oriented way.
The LEMON language allows requirements engineers to define
patterns independently of a particular MDSD tool but still
capable of being integrated with metamodels and instantiated
within MDSD tools. The language builds on formal
specification principles from related works and includes
grammar-based constructs for defining metamodels, patterns,
templates, and implementations. We describe the LEMON
language syntax and semantics using the Extended Backus-Naur
Form (EBNF). Moreover, we outline the architecture of its
execution environment, which includes a language editor, a
pattern catalogue, and an interpreter for generating MDSD tool
models, supporting the lifecycle of requirement pattern reuse—
from specification to instantiation—while enabling integration
into existing MDSD tools.

While the LEMON language and its execution environment
present a promising foundation, further research is needed to
evolve them from a proof of concept to a fully mature solution.
To this end, we conclude the paper by outlining future
development steps and formulating key research questions that
define the ongoing research agenda for the LEMON language.

This paper is structured as follows: in Section II, we present
the related works; in Section III, we present a running example
to motivate and exemplify our approach; in Section IV, we
describe in detail the LEMON language EBNF; in Section V,
we introduce the execution environment that supports the
language; and, finally, in Section VI, we draw conclusions and
future work.

II. RELATED WORKS

Requirement patterns approaches have been proposed in

literature. Methods, catalogues, and languages, among other

approaches have been envisioned. For the sake of this paper, we

classify existing work into two main categories:

• Approaches that aim to reuse requirement patterns to

generate text-based requirement documents [4], [5],

[6], [7], [8], [9], [10].

• Approaches that aim to reuse requirement patterns to

generate software models for MDSD [11], [12], [13],

[14], [15], [16].

The aim of the first type of approaches is to generate

requirement documents, selecting from a catalogue of

requirement pattern templates or controlled natural language,

producing a new requirement document into a requirement

book.

In this category, we observe proposals as PABRE (Pattern-

Based Requirements Elicitation; [4], [9]) and CaRePa

(Context-aware Requirement Patterns; [5]) that demonstrate

how template-based requirement patterns can guide the

specification process by facilitating the creation of new

requirements as documents. Similarly, Darif et al.

[10]ntroduced the Unified Template Language (UTL), which

offers tool support for the specification of requirements using

controlled natural language, particularly to create requirements

based for safety-critical systems. Other authors as Sardi et al.

[6] and Sleimi et al. [7] have proposed domain-specific text-

based catalogues for requirement pattern reuse. Finally, Denger

et al. [8] use MDSD principles to propose a controlled natural

language for embedded systems requirement pattern

specification, to reduce the imprecision in natural language

requirements specifications with the use of natural language

patterns.
While these approaches provide valuable support for text-

based elicitation and specification, they often overlook the
model-driven perspective, where requirements are expressed
directly as software models within Model-Driven Software
Development (MDSD) tools. MDSD emphasizes the use of
abstract models as the main artefacts for system specification
that can be automatically transformed into the software that meet
stakeholders’ requirements [17].

Second category of related works, arise as a way to leverage
requirement patterns to generate and reuse software models in
MDSD instead of text-based documents. The approach we
present in this paper (i.e., the LEMON language) falls in this
category.

In this category, we observe proposals from Robertson [11]
and Silva et al. [12] that show how event and use case diagrams
can be systematically used to extract recurring requirements and
organize them into reusable model-based catalogues. Some
authors as well have applied UTL to automatically generate user
interface models [16]. In practice, MDSD tool providers have
adopted ad-hoc requirement patterns catalogues to reuse

1 Although the LEMON Language is demonstrated using a specific MDSD tool

(PDS) from our running example, the LEMON language itself is designed to be
tool-agnostic. The language's constructs for metamodels and implementations

allow integration with arbitrary tools, as long as their structural metamodels are

software models from specific tools, resulting in solutions as the
Mendix Sample and Starter App Catalogue [13] and OutSystems
Application Templates (or Application Forge) [14].

The approaches are capable of reusing software models but
are limited by the syntactic and semantic constraints of specific
modelling languages and MDSD tools. As a result, the
requirement pattern specifications lack flexibility for cross-tool
integration and do not fully support conceptual abstraction
across heterogeneous platforms and domains. Thus, in this
paper, we aim to bridge this gap proposing the LEMON
language: a DSL for specifying reusable requirement patterns in
a tool-agnostic, model-oriented way for requirement
specification in MDSD.

The LEMON language builds upon our previous work, in
which we introduced the LEMON framework [15]. The
LEMON framework consists of black-boxed modules where
patterns need to be specified and stored into a catalogue, that
later a requirements engineer can reuse and integrate into an
MDSD tool using an assistant. However, our earlier work
presented the framework only at a high level, without detailing
the design of the underlying specification language needed to
create and reuse the requirement patterns. In this paper, we
address this gap by presenting the design of the LEMON
language, along with illustrative examples, and a proof of
concept for requirement pattern edition and catalogue
construction.

III. RUNNING EXAMPLE: THE CASE OF WHATSCOUNT1

Whatscount GmbH is a young Swiss software development
company specializing in digital transformation. The company
operates in various domains, including digital health, Industry
4.0, and finance. Whatscount develops its software solutions
using the MDSD tool named Posity Design Studio (PDS) [18].
PDS enables the creation of data-centric applications through
the use of six types of models. In this paper, we focus on two
foundational models used in PDS: the table model and the query
model. These models serve as the basis for the subsequent
construction of user interface models, process models, and role
access models.

In practice, Whatscount observed a recurring requirement
from stakeholders: the need to visualize data, apply filters, and
search for specific records. This led to the repeated creation of
query models grounded in predefined table models. Over time,
this activity emerged as a common and reusable solution to a
frequent problem—a candidate for a requirement pattern.

Whatscount's requirements engineers now seek a way to
document and reuse this solution while eliciting requirements
from their stakeholders. They aim to abstract this recurring
requirement into a pattern that can be systematically applied
across projects. This raises a central question:

defined in LEMON. We acknowledge current implementation, and examples

are tied to PDS as it serves here as an industry-inspired example, but future
work will extend support to other MDSD tools to test its flexibility.

How can a domain-specific language help Whatscount
specify a reusable requirement pattern that aligns with their
MDSD tool, PDS, and supports model-level reuse? In Section
IV we present the design of the LEMON language as a solution
to this research question.

IV. DESIGN: THE LEMON SPECIFICATION LANGUAGE

The LEMON specification language focuses on specifying
requirement patterns in model-driven software development
tools. The LEMON language consists of four main elements: i)
patterns; ii) templates; iii) implementations; and iv)
metamodels. These elements are used to specify requirement
patterns and templates (see Section IV.A), to later implement the
templates into a metamodel (see Section IV.B). We show the
LEMON language metamodel in Fig. 1.

To formally define the statements in the LEMON language, in
the following subsections, we provide a subset of the language
grammar using an Extended Backus-Naur Form (EBNF)
notation [19].

A. Patterns & Templates Specification

The main purpose of the LEMON language is to specify

requirement patterns. We design the LEMON language

elements for pattern specification relying on PABRE [4]. Thus,

we introduce the first language element: pattern.

A pattern is a named, self-contained element that

represents an abstract description of a reusable requirement

pattern, functional or non-functional. Each pattern encapsulates

its core purpose independently of any specific implementation

or MDSD tool, serving as a conceptual and technology-agnostic

specification. This specification is relevant as it will help

requirements engineers to decide whether the specified

requirement pattern is applicable to the project at hand or not,

as well as later creating templates that implement the pattern

into specific MDSD tools. It includes a name, a textual

description, a defined goal, an author, and a set of keywords.

Additional metadata may also be included to provide further

context and facilitate later retrieval (e.g., sources, images, links,

comments, and classification schemas). To express the pattern

definition formally, we define the LEMON language syntax

using the EBNF in the following Listing. We provide an

example of a pattern definition named “Searchable and Editable

List” whit ID “CreateList” in the context of Whatscount in

Annex VII.A.
Listing: Pattern_definition

pattern id = ID

 metadata

 name name_text_term = Term

 description description_text_term = Term

 goal goal_text_term = Term

 author author_text_term = Term

 keywords keywords_text_term += Term (‘,’ Term)*

 additional_metadata += (Additional_metadata)*

 endmetadata

endpattern

 Requirement patterns can be specialized into templates
(a.k.a. forms). A template aims to achieve the same goal as the
requirement pattern from which they are specialised, but with
different levels of granularity, parameters, and implementing the
pattern into one or more MDSD tools. Forms have a name,
description, author, version, and extra metadata, as well as fixed
and extended parts. In the LEMON language, however, instead
of creating text as other approaches, reusing a template will
create software models in an MDSD tool, using the

Fig. 1. LEMON Language Metamodel.

implementation element. To express the template definition
formally, in the following paragraphs we show the LEMON
language syntax using the EBNF, starting with template
definition.

Listing: Template_definition
template id = ID from pattern

 pattern_ref = [Pattern_def]

 name name_text_term = Term

 description description_text_term = Term

 author author_text_term = Term

 keywords keywords_text_term += Term (‘,’ Term)*

 version version_text_term = Term

 additional_metadata += (Additional_metadata)*

 fixed_part = Fixed_part_def

 (extended_part += Extended_part_def)*

 Implementations += Implementation_def*

endtemplate

 Fixed parts are mandatory when defining the template,
having only one per template. Parts describe what is needed to
achieve the requirement pattern goal without describing how to
achieve it, following what is defined in PABRE [4]. It contains
a name, a description, and a set of parameters.

Listing: Fixed_part_definition
fixedpart id = ID

 name name_text_term = Term

 description description_text_term = Term

 part_parameter_stmts += Parameter_def*

endfixedpart

 Parameters are the inputs to be instantiated in order to
implement a template into a specific MDSD tool. Parameters
include a description/question to be used when reusing the
template, and a set of keywords as additional semantical
markup.

Listing: Parameter_definition
parameter

 input_name_reference =

 [Input_stmt | Reference_Name]

 description_text_term = Term

 as additional_semantical_markup_keywords +=

 Term (‘,’ Term)*

 Extended parts are similar to fixed parts, containing extra
parameters to achieve the goal of the requirement pattern for
specific domains, tools, or constraints. They share the same
structure as fixed parts.

Listing: Extended_part_definition
extendedpart id = ID

 name name_text_term = Term

 description description_text_term = Term

 part_parameter_stmts += Parameter_def*

endfixedpart

We show an example implementing a template named “List

and Search in PDS” that extends the requirement pattern

“CreateList” for re-using it in PDS in Annex VII.B, including

fixed parts for setting up a generic query model, including

parameters for the query’s name and its primary data source.

As well, it includes an extended part that specializes the

template for digital health applications, guiding the

configuration of software models that visualize test data such

as vital signs or lab results.

B. Metamodel Definition & Template Implementation

After specifying the patterns and templates as shown in
Section IV.A, the LEMON language bridges the gap from
requirement patterns to MDSD tools through the metamodel
definition (see Section IV.B.1) and template implementation
(see Section IV.B.2).

1) Metamodel Definition
MDSD tools have an underlying metamodel. Metamodels

define how model elements are related and interconnected
structurally to each other. To allow the LEMON language to
specify how a template is implemented into a specific MDSD
tool, a metamodel needs to be defined.

A metamodel is a named element in the LEMON language
that groups the set of classes from the MDSD tool to be
instantiated. We design the metamodel element by reusing a sub
set of Ecore [20] metamodel elements (i.e., EClass, EAttribute,
and EReference). To express the metamodel element formally,
in the following paragraphs we show the LEMON language
syntax using the EBNF, starting with metamodel definition.

Listing: Metamodel definition
metamodel id = ID

 metamodel_definition_stmts += Metamodel_class_def

endmetamodel

 Classes are named elements used to describe models
(equivalent to EClass in Ecore). Classes contain attributes and
references, and they can have superclasses for inheritance.

Listing: Metamodel_class_definition
class id = ID

(supertypes += [Metamodel_class_def]+)?

 metamodel_class_def_stmts +=

 (Class_attribute_def | Class_reference_def)*

endclass

 Attributes are typed elements of a class that hold a primitive
value (e.g., text, int). It can have a default value, as well as being
the primary key of the model. Equivalent to EAttribute in Ecore.

Listing: Class_attribute_definition
attribute id = ID

 type data_type = number | text | bool …

 default term = Term

 primarykey primary_key_bool = Condition_term

endattribute

References, on the other hand, are elements of a class that
represent a relationship to another class. It can be unique, define
if it is ordered or not, the keys, the lower bound and upper bound
of the reference. Equivalent to EReference in Ecore.

Listing: Class_reference_definition
reference id = ID

 type class_name_reference = [Metamodel_class_def]

 ordered ordered_bool_term = Term

 unique unique_bool_term = Term

 keys class_name_attribute_name_references+=

[Class_attribute_def | ReferenceName])+

 lowerbound lower_bound_number_term = Term

 upperbound upper_bound_number_term = Term | *

endreference

 Using classes, attributes, and references Whatscount can
define the PDS metamodel, defining classes such as Table and
QueryModel. We show an example of this definition in Annex
VII.C.

2) Template Implementation
 Patterns and templates elements describe the abstract yet
conceptual part of the requirement patterns. Metamodels define
the classes that can be instantiated into a specific MDSD tool.
Template implementation, then combine the templates and
metamodels to reuse a requirement pattern into an MDSD tool.

 The main element is the implementation, a named element
that describes how to achieve the requirement pattern goal from
a specific template by transforming a set of inputs into outputs
from a metamodel (or set of metamodels) by applying a set of
steps. To express the implementation element formally, in the
following paragraphs we show the LEMON language syntax
using the EBNF, starting with implementation definition and
followed by inputs, outputs, and apply steps.

Listing: Implementation_definition
implementation id = ID

 tools metamodel_ref =

 [Metamodel_def | Referencename]

 (‘,’ [Metamodel_def | ReferenceName])*

 implementation_stmts +=

 (Input_def | Output_def | Apply_step)+

endimplementation

 Inputs are named elements in the LEMON language that
define the data required to execute a template implementation.
They can be: a single input or a list of inputs, and either primitive
types (e.g., text, number, boolean) or instances of classes from
the referenced metamodels. Each input may have a predefined
value or be marked as ask, meaning its value must be provided
interactively during template reuse using a query. In addition,
inputs can include checks to validate specific logic, expected
attributes to enforce mandatory values, and extras—extended
attributes not originally defined in the metamodel but required
for the template implementation. To express the input element
formally, in the following paragraphs we show the LEMON
language syntax using the EBNF, starting with input definition
and followed by each sub statement.

Listing: Input_definition
(input | inputlist) id = ID

 type data_type =

 (number | text | bool …) |

 ([Class_reference_def | ReferenceName])

 description description_text_term = Term

 (value | defaultvalue) value_term = Term | ask

 (query_def = Query_def)?

 additional_input_def +=

 (Extra_def | Expected_def | Checking_def)*

(endinput | endinputlist)

• Single Input: Represents an input that holds only one
value, which may be null, a primitive, or a class
instance.

• Input List: Represents an input that contains a list of
values, which may be empty or composed of primitive
values or class instances.

• Primitive Input: Indicates that the input type is a
primitive, such as text, number, or boolean.

• Class Input: Indicates that the input type is an instance
of a class defined in the referenced metamodel—
conceptually equivalent to an object in object-oriented
programming.

• Default Value: A constant value assigned to the input.
It does not change and is always resolved to the default
when the template is reused.

• Ask Value: A dynamic value provided at the time of
template reuse. Ask values are mutable and referenced
by parameters in the fixed or extended parts.

• Query for Ask Value from Class Input: When an ask
value is defined over a class input, it may include a
query that retrieves candidate instances from the
MDSD tool. Queries are defined using a SQL-like
syntax that allows selecting from class references,
joining other classes via references or attributes, and
applying filters with where conditions. The result set is
then used during template reuse to select one or more
options, depending on whether the input is single input
or a list.

Listing: Query_definition
query

 select (distinct)? from class_def_reference =

[Class_def | ReferenceName]

query_join_def += (join class_join_reference =

[Class_def | ReferenceName] on (reference |

attribute)

join_on_left_reference = [Class_reference_def |

Class_attribute_def | ReferenceName]

=

Join_on_right_reference = [Class_reference_def |

Class_attribute_def | ReferenceName])*

(where where_condition_term = Term)?

endquery

• Extras: Inputs may require additional attributes that
are not defined in the original metamodel class. Extras
are named elements used to extend a class instance
within the scope of a specific input, without altering
the metamodel itself. Extras are limited to primitive
types.

Listing: Extra_definition
extra id = ID

 type data_type = (number | text | bool …)

 description description_text_term = Term

endextra

• Expected: Inputs may require validation to ensure that
certain attributes from a class are provided when the
template is reused. The expected element reference a
class attribute, making it mandatory before the input
can be propagated further in the implementation
during template reuse.

Listing: Expected_definition
expected ref_attribute = [Attriubte_def |

ReferenceName]

 (defaultvalue default_value = Term)?

endextra

• Checking. Beyond mandatory values, inputs may
require additional validations to ensure specific
constraints are satisfied (e.g., the input value must be
greater than 0). A checking is a named element that
allows the specification of logic-level validations using
code blocks, such as for loops, if-else conditions, and

mathematical operations. It includes a dedicated check
statement that evaluates a condition and, if not met,
triggers an else message to provide feedback during
template reuse.

Listing: Checking_definition
checking id = ID

 checking_content_def +=

(Code_Block |

check condition_term = Term else text_term = Term)*

endchecking

 Outputs are named elements that represent the metamodel
class instances (i.e., the resulting models) to be stored into an
MDSD tool after reusing a template. They can be a single
output or a list of outputs and must be instances of classes from
the referenced metamodels—primitive types are not allowed.
Additionally, outputs can include checks to validate specific
conditions and ensure that the generated models satisfy intended
constraints. To express the output element formally, in the
following paragraphs we show the LEMON language syntax
using the EBNF, starting with output definition and followed
by the semantics of the element.

Listing: Output_definition
(output | outputlist) id = ID

 type data_type =

 ([Class_reference_def | ReferenceName])

 description description_text_term = Term

 additional_output_def += Checking_def*

(endoutput | endoutputlist)

• Single Output: Indicates that the output contains only
one value, which may be null or an instance of a
metamodel class

• Output list: Represents an output composed of
multiple values, either as an empty list or a collection
of metamodel class instances.

• Output Value: Outputs must always be instances of
classes defined in the metamodel; primitive types are
not permitted

• Checking. Outputs may include validation logic to
ensure they meet specific constraints. These checks
reuse the same mechanism defined for inputs (see
Checking_def Listing).

 To transform inputs into outputs, the LEMON language
provides the apply step, as a named element that defines the
logic for how a specific set of inputs should be processed to
produce outputs. It does so by referencing a reusable step
definition, which encapsulates the transformation logic.
Conceptually, an apply step is equivalent to invoking a function
in programming languages or calling a transformation rule in
MDSD. Apply step can be invoked within either a template
implementation or another step definition. Apply steps can be
configured to iterate over lists, being applied conditionally, or
run once depending on the data and logic. Additionally, apply
steps map inputs and outputs from higher-level contexts
from/to the referenced step. To express the apply step element
formally, in the following paragraphs we show the LEMON
language syntax using the EBNF, starting with apply step
definition and followed by the definition of step.

Listing: Apply_step_definition
applystep step_reference =

 [Step_def | ReferenceName] as id = ID

 (foreach for_each_var_identifier = [ReferenceName]

 in for_each_set_identifier = [ReferenceName])?

 (if apply_step_condition = Term)?

 having as input

 having_as_input_ref += Having_as_input_def*

 (having as output

 having_as_output_ref += Having_as_output_def*)?

endapplystep

• For-each Apply Step. Applies the referenced step
multiple times, once for each element in a list, as soon
as the required inputs are provided.

• Conditional Apply Step. Executes the step only once,
provided that a specified condition evaluates to true
and the inputs are available.

• Conditional for-each apply step. Combines both for-
each and condition apply steps. The step is applied to
each list element, but only if the condition is satisfied
on the level of the individual list element.

• One-time apply step. Applies the step exactly once,
without any looping or conditional logic, as soon as the
inputs are provided.

• Having as input. Specifies the mapping of input values
from a higher-level context (such as another step or the
template implementation) to the inputs of the
referenced step. These values may reference inputs,
outputs, or use the ask operator.

Listing: Having_as_input_definition
[Input_def | ReferenceName] =

(ask | [Input_def | ReferenceName])

• Having as output. Defines the assignment (from left to
right) between the outputs of the referenced step and
those of the enclosing context, such as an
implementation or step. If no explicit output
mappings are provided, the outputs from the
referenced step are implicitly propagated to the upper-
level context.

Listing: Having_as_output_definition
[Output_def | ReferenceName] =

[Output_def | ReferenceName]

 Finally, a step is a named element that encapsulates
transformation logic along with its associated inputs and
outputs. It serves as a reusable definition that can be invoked
from one or more apply steps. Conceptually, a step corresponds
to the definition of a transformation rule in MDSD or the
definition of a function in programming languages. Steps may
also include nested apply steps, enabling composition and
recursion. The core transformation logic is defined within an
apply block, which is a code block. To express the step element
formally, in the following listing we show the LEMON language
syntax using the EBNF.

Listing X: Step_definition
step id = ID

 step_inputs += Input_def*

 step_outputs += Output_def*

 step_apply_steps += Apply_step_def*

 apply

 code_blocks_def = Code_Block

 endapply

endstep

We illustrate the template implementation in our running

example with an implementation for the “List and Search in

PDS” template (see Annex VII.D). It takes a query name

(I_QueryName) and a selected table (I_Table) as inputs, and

produces a query model (O_QueryModel) as output. The

implementation is composed of two apply steps: i) one to

create the query model from the given name, and ii) another to

relate the created model to the selected table. The output of the

second step is propagated as the final template

implementation output, having a query model as the result of

reusing the “List and Search in PDS” pattern template. We

provide specific examples on input (see Annex VII.E), output

(see Annex VII.F), apply step (see Annex VII.G), and step

definitions (see Annex VII.H), to allow the template

implementation as required from Whatscount following the

LEMON language syntax.

V. PROOF OF CONCEPT IMPLEMENTATION: EXECUTION

ENVIRONMENT FOR THE LEMON LANGUAGE

To make a proof of concept of the LEMON language, we
implemented an execution environment tailored to the language
EBNF. This execution environment comprises three main
components: the language editor, the pattern catalogue, and the
interpreter. We made available the proof of concept of the
execution environment in our external repository [21].

Fig. 1. LEMON Language Execution Environment C4 Container Diagram.

A. LEMON Language Editor

The LEMON language editor is built using Eclipse XText

[22], relying on the Eclipse Modelling Framework [23]. It

provides support for lexical, syntactic, and semantic analysis of

LEMON language based on the EBNF grammar introduced

earlier. Through this editor, requirements engineers can

produce .lemon files that capture requirement patterns,

templates, metamodels, and steps (see Fig. 2).

Fig. 2. The LEMON Language Eclipse XText Editor.

B. Pattern Catalogue

The pattern catalogue is a MongoDB non-relational

database that stores the .lemon files generated by the language

editor. It allows users to search, retrieve, and reuse requirement

patterns and templates. An external front-end interface

consumes metadata from stored patterns, templates, fixed

parts, extended parts, inputs, outputs, and steps enabling

recommendation and filtering of relevant requirement

specifications (see Fig. 3)

Fig. 3. Mock-up requirement pattern catalogue.

C. Interpreter

The LEMON interpreter is a .NET application written in C#

that exposes a RESTful API using ASP.NET Core. This API

serves both the catalogue (to load and store .lemon files) and

external front-ends (to provide inputs and drive pattern reuse).

It supports HTTP operations to submit, update, and delete

inputs, and to retrieve execution feedback (see Fig. 4).

Fig. 4. LEMON Interpreter RESTFul API Example.

The interpreter supports both basic and advanced execution

operations. Core capabilities include arithmetic operations,

memory management, and control flows such as conditionals

and loops. More advanced features include undo/redo handling,

automatic data bindings among inputs and outputs, and

runtime error detection. Once a pattern template is loaded, the

interpreter initializes a context-bound template instance,

generates corresponding input/output objects, and evaluates

steps, queries, and checks (see Fig. 5).

Fig. 5. LEMON Interpreter Abstractions.

 The code execution workflow is as follows: i) the

interpreter identifies inputs marked as "ask"; ii) as inputs are

provided, values propagate to dependent apply steps via having

as input; iii) nested apply steps recursively evaluate available

inputs; iv) once inputs are resolved, apply are executed; v)

finally, outputs are validated and stored. This process is

triggered whenever an input value changes (see Fig. 6).

Fig. 6. LEMON Code Execution.

As inputs and outputs are linked to the MDSD tool's

metamodel, the interpreter can query data via queries and

persist generated outputs into the tool’s environment,

completing the requirement pattern reuse for MDSD tools. In

Fig. 7, we show how the query model output after reusing the

implemented template of our running example at Whatscount

is stored in PDS.

Fig. 7. Example Model generated into an integrated MDSD tool: A Query

Model in PDS.

VI. CONCLUSIONS AND FUTURE WORK

 In this paper, we introduced the LEMON language—a
domain-specific language designed to bridge the gap between
reusable requirement patterns and Model-Driven Software
Development (MDSD) tools. We presented the EBNF grammar
of the language, described how it enables the specification of
patterns and templates, and showed how it connects to MDSD
tool metamodels through template implementations.
Furthermore, we demonstrated how the LEMON language can
be executed to allow requirement patterns reuse and integration
with MDSD tools by proposing an LEMON execution
environment. The LEMON execution environment includes a
language editor, catalogue, and interpreter.

 As part of our ongoing work on the LEMON language, we
identify open research directions as future work:

 RQ1. How do requirements engineers use the LEMON
language to specify requirement patterns for MDSD tools?
While this paper provides the technical foundation and language
design, questions remain regarding the actual usability of
LEMON in real-world settings. Empirical studies are needed to
observe how requirements engineers create, modify, and reuse

patterns using LEMON, and to evaluate their efficiency and
effectiveness when doing so. Additionally, aspects such as
support for pattern composition and integration with various
MDSD tools must be explored to understand the practical impact
of LEMON in diverse MDSD tools.

 RQ2. Can the specification of requirement patterns be
automated using the LEMON language as a foundation? A key
advantage of having a domain-specific language is the
possibility of automating the generation and validation of
requirement patterns. Inspired by recent work using Large
Language Models (LLMs) for requirement patterns
specification and reuse [9], this research question aims to
investigate whether Artificial Intelligence techniques such as
LLMs can be leveraged to automatically generate LEMON-
conformant specifications. Such specifications could then be
checked for consistency using the language’s EBNF grammar.
This research question would explore how the LEMON
language can be used to systematically build catalogs of
patterns, supported by exploratory research on existing
application templates, requirement samples, and MDSD tool
(a.k.a. LowCode/NoCode tools) resources available in industry
[13], [14].

 RQ3. How do requirements engineers interact with the
pattern catalogue and reuse interface? The LEMON language
serves as an enabler for specifying, retrieving, and reusing
requirement patterns within MDSD tools. However, the
usability and effectiveness of the external front-ends for
interacting with the catalogue and for reusing the requirement
patterns specified in LEMON remain open questions. Future
research should include empirical evaluations and user studies
to assess how well requirements engineers interact with these
components. Design iterations and interface prototypes will also
be necessary to determine how these external front-end systems
can best support the reuse of requirement patterns in MDSD
tools.

 These research questions aim to extend the technical
contributions of this paper and establish a pathway toward
realizing the full potential of the LEMON language in bridging
the gap between requirements engineering and model-driven
software development through requirement pattern reuse.

VII. ANNEX: LEMON LANGUAGE EXAMPLE

This annex presents the listings for illustrating the use of the

LEMON language at Whatscount. Each listing is referenced in

the text.

A. Pattern Specification Example

pattern CreateList

 metadata

 name “Searchable and Editable List”

 description “This pattern supports presenting

structured data in a list that users can search,

filter, and edit—common in scenarios requiring data

overview and manipulation, like user management or

inventory control.”

 goal “Enable users to efficiently view, search

and edit structured data records.”

 author “Whatscount”

 keywords “Data List”, “Search functionality”,

“Editable Entries”, “Filtering”

 sources

 source “Internal project experience with data

management” url “https://...”

 source “UI/UX reference diagram for list

manipulation” img “example.png”

 endsources

 classified as “Functional Requirement”

 endmetadata

endpattern

B. Template Specification Example

template F_PDSListToSearchAndEdit

 from pattern CreateList

 name “List and Search in PDS”

 description “This template implements the

Searchable and Editable List pattern within the

Posity Design Studio (PDS). It provides requirement

engineers with a structured approach to define

QueryModels that enable dynamic listing, searching,

and editing of domain-specific data. By guiding

users through the setup of core data tables and

their relationships, this template supports the

efficient visualisation of structured records”

 author “Whatscount and Posity AG”

 keywords “Visualization”, “QueryModel”, “Search”,

“PDS”

 version “1.0”

 fixedpart FP_PDSGenericListAndEdit

 name “Generic QueryModel for Listing and

Editing”

 description “This fixed part defines the

essential structure for creating a QueryModel in

PDS for listing, searching, and editing data”

 parameter I_QueryName “Name of the query model”

as “Data”, “Form”, “Object”

 parameter I_Table “Primary data source” as

“Object”, “Data”

 endfixedpart

 extendedpart EP_DigitalHealthListAndSearchTestData

 name “Digital Health Test Data View”

 description “This extended part specialises the

generic list and search pattern template for

digital health applications. As a result, a

QueryModel is created focused on visualizing and

navigating test data, such as vital signs or lab

results.”

 parameter I_QueryName “What is the name of the

health test to visualize?” as “Health Test”, “Blood

Pressure Test”, “Cell count panel”

 parameter I_Table “Where is the test data

stored?” as “Blood pressure observation”, “Vital

sign observation”, “EPD”

 endextendedpart

 implementation …

 endimplementation

endtemplate

C. Metamodel Definition Example

metamodel PosityDesignStudioMetamodel

 class Table

 attribute Name

 type text

 default “Default table name”

 primarykey true

 endattribute

 endclass

 class QueryModel

 attribute Name

 type text

 default “Default Query model name”

 primarykey true

 endattribute

 reference FKTableOfQueryModel

 type Table

 ordered false

 unique false

 keys Table.Name

 lowerbound 0

 upperbound *

 endreference

 endclass

endmetamodel

D. Template Implementation Example

template F_PDSListToSearchAndEdit from pattern
CreateList

 …

implementation PDS_Implementation

 tools PosityDesignStudioMetamodel

 input I_QueryName

 type text

 description “Name of the query model”

 value ask

 endinput

 input I_Table

 type PosityDesignStudioMetamodel.Table

 … // See Input Definition example

 endinput

 output O_QueryModel

 type PosityDesignStudioMetamodel.O_QueryModel

 … // See Output Definition example

 endoutput

 //First the query model need to be created based

 //On the provided name

 applystep S_CreateNamedQueryModel

 as s_first_create_query_model

 having as input

 I_Name = I_QueryName

 endapplystep

 //Then: The created query model is related to

 //the selected Table (see example Step def)

 applystep S_RelateQueryModelWithTable

 as s_second_relate_table_to_query_model

 having as input

 I_SelectedTable = I_Table

 I_QueryModel = s_first_create_query_model.O_QueryModel

 having as output

 O_QueryModel = O_RelatedQueryModel

 endapplystep

endimplementation
endtemplate

E. Input definition example

input I_Table

 type PosityDesignStudioMetamodel.Table

 description “Contains a Table for creating a

QueryModel out of it”

 value ask

 query

 select distinct from PosityDesignStudioMetamodel.Table

 endquery

 expected I_Table.Name endexpected

 extra e_is_header

 type bool

 description “Determines wheter the selected

Table is the Header of the QueryModel”

 endextra

 checking C_has_a_name

 check I_Table.Name <> “” else “The table name

can not be an empty string”

 endchecking

endinput

F. Output definition example

output O_QueryModel

 type PosityDesignStudioMetamodel.QueryModel

 description "Final Query Model"

 checking C_has_valid_name

 check O_QueryModel <> null else “QueryModel Name

can not be empty”

 endchecking

endoutput

G. Apply step definition example

applystep S_RelateQueryModelWithTable

 as s_second_relate_table_to_query_model

 having as input

 I_SelectedTable = I_Table

 I_QueryModel = s_first_create_query_model.O_QueryModel

 having as output

 O_QueryModel = O_RelatedQueryModel

endapplystep

H. Step definition example

Listing X: Example Step_definition
step S_RelateQueryModelWithTable

 input I_SelectedTable

 type PosityDesignStudioMetamodel.Table

 …

 endinput

 input I_QueryModelToRelate

 type PosityDesignStudioMetamodel.QueryModel

 …

 endinput

 output O_RelatedQueryModel

 type PosityDesignStudioMetamodel.QueryModel

 …

 endoutput

 apply

 O_RelatedQueryModel = I_QueryModelToRelate

 relate O_RelatedQueryModel

 to I_SelectedTable in FKTableOfQueryModel

 endapply

endstep

ACKNOWLEDGMENT

We would like to thank all the people who contributed
valuable feedback during the design of the LEMON language.
In particular, we express our gratitude to Tobias Ulrich,
Veronika Kamber, Olivia Schöb, Patricia Fiechter, and Eslem
Küçükkaya for their work on the LEMON language user
manual, which is provided as a supplementary resource in the
external repository linked to this paper. This research was fully
supported by the ZHAW Institute of Computer Sciences (InIT),
School of Engineering, and the Innosuisse Flagship SHIFT
project.

REFERENCES

[1] A. Gupta, G. Poels, and P. Bera, “Using Conceptual Models in Agile

Software Development: A Possible Solution to Requirements

Engineering Challenges in Agile Projects,” IEEE Access, vol. 10, pp.
119745–119766, 2022, doi: 10.1109/ACCESS.2022.3221428.

[2] T. N. Kudo, R. F. Bulcão-Neto, and A. M. R. Vincenzi, “Requirement
patterns: a tertiary study and a research agenda,” IET Software, vol.

14, no. 1, pp. 18–26, Feb. 2020, doi: 10.1049/iet-sen.2019.0016.

[3] P. Mahendra and A. Ghazarian, “Patterns in the Requirements
Engineering: A Survey and Analysis Study,” in WSEAS Transactions

of Information Science and Applications, 2014, pp. 214–230.

[4] S. Renault, O. Mendez-Bonilla, X. Franch, and C. Quer, “PABRE:
Pattern-based Requirements Elicitation,” in 2009 Third International

Conference on Research Challenges in Information Science, IEEE,

Apr. 2009, pp. 81–92. doi: 10.1109/RCIS.2009.5089271.
[5] K. Kumar and Ra. K. Saravanaguru, “CONTEXT AWARE

REQUIREMENT PATTERNS (CaRePa) METHODOLOGY AND

ITS EVALUATION,” Far East Journal of Electronics and
Communications, vol. 16, no. 1, pp. 101–117, Feb. 2016, doi:

10.17654/EC016010101.

[6] L. Sardi, A. Idri, L. Redman, H. Alami, and J. Fernández-Alemán,
“A Reusable Catalog of Requirements for Gamified Mobile Health

Applications,” in Proceedings of the 17th International Conference

on Evaluation of Novel Approaches to Software Engineering,
SCITEPRESS - Science and Technology Publications, 2022, pp.

435–442. doi: 10.5220/0011071700003176.

[7] A. Sleimi, M. Ceci, M. Sabetzadeh, L. C. Briand, and J. Dann,

“Automated Recommendation of Templates for Legal

Requirements,” in Proceedings of the IEEE International Conference

on Requirements Engineering, IEEE Computer Society, Aug. 2020,
pp. 158–168. doi: 10.1109/RE48521.2020.00027.

[8] C. Denger, D. M. Berry, and E. Kamsties, “Higher quality
requirements specifications through natural language patterns,” in

Proceedings 2003 Symposium on Security and Privacy, IEEE, 2003,

pp. 80–90. doi: 10.1109/SWSTE.2003.1245428.
[9] X. Franch, S. Gnesi, F. Paccosi, C. Quer, and L. Semini, “Leveraging

Requirements Elicitation through Software Requirement Patterns

and LLMs,” in REFSQ2025, 2025, pp. 261–276. doi: 10.1007/978-
3-031-88531-0_19.

[10] I. Darif, G. El Boussaidi, S. Kpodjedo, and A. Paz, “UTL: A Unified

Language for Requirements Templates,” in Proceedings of the 40th
ACM/SIGAPP Symposium on Applied Computing, 2025, pp. 1489–

1506. doi: 10.1145/3672608.3707911.

[11] S. Robertson, “Requirements Patterns Via Events/Use Cases,” in
PLoP, 1996, pp. 1-16.

[12] A. R. da Silva et al., “A pattern language for use cases specification,”

in Proceedings of the 20th European Conference on Pattern

Languages of Programs, New York, NY, USA: ACM, Jul. 2015, pp.
1–18. doi: 10.1145/2855321.2855330.

[13] Mendix, “Mendix Sample and Starter App Catalogue.” Accessed:

Mar. 30, 2025. [Online]. Available:
https://marketplace.mendix.com/link/contenttype/102,109

[14] OutSystems, “OutSystems: Application Templates.” Accessed: Jul.

11, 2024. [Online]. Available:
https://success.outsystems.com/documentation/11/building_apps/ap

plication_templates/

[15] D. Mosquera, O. Pastor, and J. Spielberger, “LEMON: A Tool for
Enhancing Software Requirements Communication through

Requirements Pattern-based Modelling Assistance,” in Posters &

Tools Track at REFSQ2024, 2024.
[16] I. Darif, G. El Boussaidi, and S. Kpodjedo, “On the Automated

Generation of UI for Template-based Requirements Specification,”

in MO2RE, 2025.
[17] S. Sendall and W. Kozaczynski, “Model transformation: the heart and

soul of model-driven software development,” IEEE Softw, vol. 20,

no. 5, pp. 42–45, Sep. 2003, doi: 10.1109/MS.2003.1231150.
[18] Posity AG, “Posity Design Studio Homepage.” Accessed: May 31,

2025. [Online]. Available: https://posity.ch

[19] Wikipedia, “Extended Backus-Naur Form.” Accessed: May 31,

2025. [Online]. Available:

https://en.wikipedia.org/wiki/Extended_Backus–Naur_form

[20] Eclipse Foundation, “Ecore: A Metamodel for Models.” Accessed:
Mar. 07, 2024. [Online]. Available: https://wiki.eclipse.org/Ecore

[21] D. Mosquera, M. Ruiz, and A. Martakos, “A Domain-Specific
Language For Specifying Requirement Patterns for Model-Driven

Development - EBNF and Execution Envrionment POC.” Accessed:

Jun. 01, 2025. [Online]. Available:
https://doi.org/10.5281/zenodo.15601580

[22] XText, “XText Eclipse Homepage.” Accessed: May 31, 2025.

[Online]. Available: https://eclipse.dev/Xtext
[23] Eclipse, “Eclipse Modelling Framework.” Accessed: May 31, 2025.

[Online]. Available:

https://en.wikipedia.org/wiki/Eclipse_Modeling_Framework

