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Abstract—Requirement patterns have emerged in 

requirements engineering as a way to streamline requirements 

specification by promoting reuse. However, existing approaches in 

the literature have primarily focused on defining requirement 

patterns for reuse within textual requirement documents, 

overlooking software models. Meanwhile, other model-driven 

software development (MDSD) approaches that attempt to reuse 

software models as patterns for requirements specification are tied 

to specific modelling languages, limiting their applicability. In this 

paper, we introduce the LEMON specification language: a 

domain-specific language designed to specify and reuse 

requirement patterns for MDSD tools. The LEMON language 

supports the specification of patterns, templates, and the 

integration in any MDSD tools' metamodels, allowing 

requirements patterns customisation and their integration in 

MDSD environments. We present an Extended Backus-Naur 

Form (EBNF) of the LEMON language exemplified by means of 

an industry-inspired example. Moreover, we describe the 

implementation of an execution environment to show the 

integration of the LEMON language in an MDSD tool. We 

conclude with our vision and outline future steps for the evolution 

of the LEMON language to streamline requirements specification 

in MDSD tools using requirement patterns.  

Keywords—Requirement Patterns, LEMON, Model-driven 

software development, Requirement specification 

I. INTRODUCTION 

In requirements engineering, the elicitation and specification 
of software requirements are essential but often time-consuming 
and error-prone activities, resulting in incomplete and missing 
software requirements [1]. To address these challenges, 
requirement patterns have been proposed as reusable solutions 
for recurring stakeholder needs [2], [3]. These patterns aim to 
improve consistency, reduce specification effort, and promote 
best practices by capturing validated structures for both 
functional and non-functional requirements. 

Some authors [4], [5], [6], [7], [8], [9], [10] have proposed 
approaches for reusing requirement patterns for specifying 
requirements as textual requirement documents, limiting its 
applicability in MDSD as software models are the main artefact  
instead of text descriptions. Other authors [11], [12], [13], [14], 

[15], [16] have proposed approaches to reuse requirement 
patterns to generate software models for MDSD. However, these 
approaches are tied to specific modelling languages, MDSD 
tools, or domains. In our previous work, we introduced the 
LEMON framework [15], supporting the reuse of requirement 
patterns in MDSD through black-boxed modules and assistant-
based integration. However, this prior work did not define how 
to specify the requirement patterns and how to execute them. 

Thus, in this paper we present the LEMON language—a 
domain-specific language (DSL) for specifying reusable 
requirement patterns in a tool-agnostic, model-oriented way. 
The LEMON language allows requirements engineers to define 
patterns independently of a particular MDSD tool but still 
capable of being integrated with metamodels and instantiated 
within MDSD tools. The language builds on formal 
specification principles from related works and includes 
grammar-based constructs for defining metamodels, patterns, 
templates, and implementations. We describe the LEMON 
language syntax and semantics using the Extended Backus-Naur 
Form (EBNF). Moreover, we outline the architecture of its 
execution environment, which includes a language editor, a 
pattern catalogue, and an interpreter for generating MDSD tool 
models, supporting the lifecycle of requirement pattern reuse—
from specification to instantiation—while enabling integration 
into existing MDSD tools.  

While the LEMON language and its execution environment 
present a promising foundation, further research is needed to 
evolve them from a proof of concept to a fully mature solution. 
To this end, we conclude the paper by outlining future 
development steps and formulating key research questions that 
define the ongoing research agenda for the LEMON language.  

This paper is structured as follows: in Section II, we present 
the related works; in Section III, we present a running example 
to motivate and exemplify our approach; in Section IV, we 
describe in detail the LEMON language EBNF; in Section V, 
we introduce the execution environment that supports the 
language; and, finally, in Section VI, we draw conclusions and 
future work. 



II. RELATED WORKS 

Requirement patterns approaches have been proposed in 

literature. Methods, catalogues, and languages, among other 

approaches have been envisioned. For the sake of this paper, we 

classify existing work into two main categories: 

• Approaches that aim to reuse requirement patterns to 

generate text-based requirement documents [4], [5], 

[6], [7], [8], [9], [10]. 

• Approaches that aim to reuse requirement patterns to 

generate software models for MDSD [11], [12], [13], 

[14], [15], [16]. 

The aim of the first type of approaches is to generate 

requirement documents, selecting from a catalogue of 

requirement pattern templates or controlled natural language, 

producing a new requirement document into a requirement 

book.  

In this category, we observe proposals as PABRE (Pattern-

Based Requirements Elicitation; [4], [9]) and CaRePa 

(Context-aware Requirement Patterns; [5]) that demonstrate 

how template-based requirement patterns can guide the 

specification process by facilitating the creation of new 

requirements as documents. Similarly, Darif et al. 

[10]ntroduced the Unified Template Language (UTL), which 

offers tool support for the specification of requirements using 

controlled natural language, particularly to create requirements 

based for safety-critical systems. Other authors as Sardi et al. 

[6] and Sleimi et al. [7] have proposed domain-specific text-

based catalogues for requirement pattern reuse. Finally, Denger 

et al. [8] use MDSD principles to propose a controlled natural 

language for embedded systems requirement pattern 

specification, to reduce the imprecision in natural language 

requirements specifications with the use of natural language 

patterns. 
While these approaches provide valuable support for text-

based elicitation and specification, they often overlook the 
model-driven perspective, where requirements are expressed 
directly as software models within Model-Driven Software 
Development (MDSD) tools. MDSD emphasizes the use of 
abstract models as the main artefacts for system specification 
that can be automatically transformed into the software that meet 
stakeholders’ requirements [17]. 

Second category of related works, arise as a way to leverage 
requirement patterns to generate and reuse software models in 
MDSD instead of text-based documents. The approach we 
present in this paper (i.e., the LEMON language) falls in this 
category.  

In this category, we observe proposals from Robertson [11] 
and Silva et al. [12] that show how event and use case diagrams 
can be systematically used to extract recurring requirements and 
organize them into reusable model-based catalogues. Some 
authors as well have applied UTL to automatically generate user 
interface models [16]. In practice, MDSD tool providers have 
adopted ad-hoc requirement patterns catalogues to reuse 

 
1 Although the LEMON Language is demonstrated using a specific MDSD tool 

(PDS) from our running example, the LEMON language itself is designed to be 
tool-agnostic. The language's constructs for metamodels and implementations 

allow integration with arbitrary tools, as long as their structural metamodels are 

software models from specific tools, resulting in solutions as the 
Mendix Sample and Starter App Catalogue [13] and OutSystems 
Application Templates (or Application Forge) [14]. 

The approaches are capable of reusing software models but 
are limited by the syntactic and semantic constraints of specific 
modelling languages and MDSD tools. As a result, the 
requirement pattern specifications lack flexibility for cross-tool 
integration and do not fully support conceptual abstraction 
across heterogeneous platforms and domains. Thus, in this 
paper, we aim to bridge this gap proposing the LEMON 
language: a DSL for specifying reusable requirement patterns in 
a tool-agnostic, model-oriented way for requirement 
specification in MDSD.  

The LEMON language builds upon our previous work, in 
which we introduced the LEMON framework [15]. The 
LEMON framework consists of black-boxed modules where 
patterns need to be specified and stored into a catalogue, that 
later a requirements engineer can reuse and integrate into an 
MDSD tool using an assistant. However, our earlier work 
presented the framework only at a high level, without detailing 
the design of the underlying specification language needed to 
create and reuse the requirement patterns. In this paper, we 
address this gap by presenting the design of the LEMON 
language, along with illustrative examples, and a proof of 
concept for requirement pattern edition and catalogue 
construction.  

III. RUNNING EXAMPLE: THE CASE OF WHATSCOUNT1 

Whatscount GmbH is a young Swiss software development 
company specializing in digital transformation. The company 
operates in various domains, including digital health, Industry 
4.0, and finance. Whatscount develops its software solutions 
using the MDSD tool named Posity Design Studio (PDS) [18]. 
PDS enables the creation of data-centric applications through 
the use of six types of models. In this paper, we focus on two 
foundational models used in PDS: the table model and the query 
model. These models serve as the basis for the subsequent 
construction of user interface models, process models, and role 
access models. 

In practice, Whatscount observed a recurring requirement 
from stakeholders: the need to visualize data, apply filters, and 
search for specific records. This led to the repeated creation of 
query models grounded in predefined table models. Over time, 
this activity emerged as a common and reusable solution to a 
frequent problem—a candidate for a requirement pattern. 

Whatscount's requirements engineers now seek a way to 
document and reuse this solution while eliciting requirements 
from their stakeholders. They aim to abstract this recurring 
requirement into a pattern that can be systematically applied 
across projects. This raises a central question: 

 

defined in LEMON. We acknowledge current implementation, and examples 

are tied to PDS as it serves here as an industry-inspired example, but future 
work will extend support to other MDSD tools to test its flexibility. 



How can a domain-specific language help Whatscount 
specify a reusable requirement pattern that aligns with their 
MDSD tool, PDS, and supports model-level reuse? In Section 
IV we present the design of the LEMON language as a solution 
to this research question. 

IV. DESIGN: THE LEMON SPECIFICATION LANGUAGE 

The LEMON specification language focuses on specifying 
requirement patterns in model-driven software development 
tools. The LEMON language consists of four main elements: i) 
patterns; ii) templates; iii) implementations; and iv) 
metamodels. These elements are used to specify requirement 
patterns and templates (see Section IV.A), to later implement the 
templates into a metamodel (see Section IV.B). We show the 
LEMON language metamodel in  Fig. 1. 

To formally define the statements in the LEMON language, in 
the following subsections, we provide a subset of the language 
grammar using an Extended Backus-Naur Form (EBNF) 
notation [19].  

A. Patterns & Templates Specification 

The main purpose of the LEMON language is to specify 

requirement patterns. We design the LEMON language 

elements for pattern specification relying on PABRE [4]. Thus, 

we introduce the first language element: pattern. 

A pattern is a named, self-contained element that 

represents an abstract description of a reusable requirement 

pattern, functional or non-functional. Each pattern encapsulates 

its core purpose independently of any specific implementation 

or MDSD tool, serving as a conceptual and technology-agnostic 

specification. This specification is relevant as it will help 

requirements engineers to decide whether the specified 

requirement pattern is applicable to the project at hand or not, 

as well as later creating templates that implement the pattern 

into specific MDSD tools. It includes a name, a textual 

description, a defined goal, an author, and a set of keywords. 

Additional metadata may also be included to provide further 

context and facilitate later retrieval (e.g., sources, images, links, 

comments, and classification schemas).  To express the pattern 

definition formally, we define the LEMON language syntax 

using the EBNF in the following Listing. We provide an 

example of a pattern definition named “Searchable and Editable 

List” whit ID “CreateList” in the context of Whatscount in 

Annex VII.A. 
Listing: Pattern_definition 

pattern id = ID 

 metadata 

  name name_text_term = Term 

  description description_text_term = Term 

  goal goal_text_term = Term 

  author author_text_term = Term 

  keywords keywords_text_term += Term (‘,’ Term)* 

  additional_metadata += (Additional_metadata)* 

 endmetadata 

endpattern 

 Requirement patterns can be specialized into templates 
(a.k.a. forms). A template aims to achieve the same goal as the 
requirement pattern from which they are specialised, but with 
different levels of granularity, parameters, and implementing the 
pattern into one or more MDSD tools.  Forms have a name, 
description, author, version, and extra metadata, as well as fixed 
and extended parts. In the LEMON language, however, instead 
of creating text as other approaches, reusing a template will 
create software models in an MDSD tool, using the 

Fig. 1. LEMON Language Metamodel. 



implementation element.  To express the template definition 
formally, in the following paragraphs we show the LEMON 
language syntax using the EBNF, starting with template 
definition.  

Listing: Template_definition 
template id = ID from pattern  

                    pattern_ref = [Pattern_def] 

 name name_text_term = Term 

 description description_text_term = Term 

 author author_text_term = Term 

 keywords keywords_text_term += Term (‘,’ Term)* 

 version version_text_term = Term 

 additional_metadata += (Additional_metadata)* 

 fixed_part = Fixed_part_def 

 (extended_part += Extended_part_def)*  

 Implementations += Implementation_def* 

endtemplate 

 Fixed parts are mandatory when defining the template, 
having only one per template. Parts describe what is needed to 
achieve the requirement pattern goal without describing how to 
achieve it, following what is defined in PABRE [4]. It contains 
a name, a description, and a set of parameters. 

Listing: Fixed_part_definition 
fixedpart id = ID  

 name name_text_term = Term 

 description description_text_term = Term 

 part_parameter_stmts += Parameter_def* 

endfixedpart 

 Parameters are the inputs to be instantiated in order to 
implement a template into a specific MDSD tool. Parameters 
include a description/question to be used when reusing the 
template, and a set of keywords as additional semantical 
markup. 

Listing: Parameter_definition 
parameter  

  input_name_reference =  

  [Input_stmt | Reference_Name] 

  description_text_term = Term 

  as additional_semantical_markup_keywords +=  

  Term (‘,’ Term)* 

 Extended parts are similar to fixed parts, containing extra 
parameters to achieve the goal of the requirement pattern for 
specific domains, tools, or constraints. They share the same 
structure as fixed parts.  

Listing: Extended_part_definition 
extendedpart id = ID  

 name name_text_term = Term 

 description description_text_term = Term 

 part_parameter_stmts += Parameter_def* 

endfixedpart 

We show an example implementing a template named “List 

and Search in PDS” that extends the requirement pattern 

“CreateList” for re-using it in PDS in Annex VII.B, including 

fixed parts for setting up a generic query model, including 

parameters for the query’s name and its primary data source. 

As well, it includes an extended part that specializes the 

template for digital health applications, guiding the 

configuration of software models that visualize test data such 

as vital signs or lab results. 

B. Metamodel Definition & Template Implementation 

After specifying the patterns and templates as shown in 
Section IV.A, the LEMON language bridges the gap from 
requirement patterns to MDSD tools through the metamodel 
definition (see Section IV.B.1) and template implementation 
(see Section IV.B.2).  

1) Metamodel Definition 
MDSD tools have an underlying metamodel. Metamodels 

define how model elements are related and interconnected 
structurally to each other. To allow the LEMON language to 
specify how a template is implemented into a specific MDSD 
tool, a metamodel needs to be defined. 

A metamodel is a named element in the LEMON language 
that groups the set of classes from the MDSD tool to be 
instantiated. We design the metamodel element by reusing a sub 
set of Ecore [20] metamodel elements (i.e., EClass, EAttribute, 
and EReference).  To express the metamodel element formally, 
in the following paragraphs we show the LEMON language 
syntax using the EBNF, starting with metamodel definition.  

Listing: Metamodel definition 
metamodel id = ID  

 metamodel_definition_stmts += Metamodel_class_def 

endmetamodel 

 Classes are named elements used to describe models 
(equivalent to EClass in Ecore). Classes contain attributes and 
references, and they can have superclasses for inheritance. 

Listing: Metamodel_class_definition 
class id = ID  

(supertypes += [Metamodel_class_def]+)? 

 metamodel_class_def_stmts +=  

 (Class_attribute_def | Class_reference_def)* 

endclass 

 Attributes are typed elements of a class that hold a primitive 
value (e.g., text, int). It can have a default value, as well as being 
the primary key of the model. Equivalent to EAttribute in Ecore.  

Listing: Class_attribute_definition 
attribute id = ID 

 type data_type = number | text | bool … 

 default term = Term 

 primarykey primary_key_bool = Condition_term 

endattribute 

References, on the other hand, are elements of a class that 
represent a relationship to another class. It can be unique, define 
if it is ordered or not, the keys, the lower bound and upper bound 
of the reference. Equivalent to EReference in Ecore. 

Listing: Class_reference_definition 
reference id = ID 

 type class_name_reference = [Metamodel_class_def] 

 ordered ordered_bool_term = Term 

 unique unique_bool_term = Term 

 keys class_name_attribute_name_references+= 

[Class_attribute_def | ReferenceName])+ 

 lowerbound lower_bound_number_term = Term 

 upperbound upper_bound_number_term = Term | * 

endreference 

 Using classes, attributes, and references Whatscount can 
define the PDS metamodel, defining classes such as Table and 
QueryModel. We show an example of this definition in Annex 
VII.C. 



2) Template Implementation 
 Patterns and templates elements describe the abstract yet 
conceptual part of the requirement patterns. Metamodels define 
the classes that can be instantiated into a specific MDSD tool. 
Template implementation, then combine the templates and 
metamodels to reuse a requirement pattern into an MDSD tool.  

 The main element is the implementation,  a named element 
that describes how to achieve the requirement pattern goal from 
a specific template by transforming a set of inputs into outputs 
from a metamodel (or set of metamodels) by applying a set of 
steps. To express the implementation element formally, in the 
following paragraphs we show the LEMON language syntax 
using the EBNF, starting with implementation definition and 
followed by inputs, outputs, and apply steps. 

Listing: Implementation_definition 
implementation id = ID 

 tools metamodel_ref =  

 [Metamodel_def | Referencename]  

 (‘,’ [Metamodel_def | ReferenceName])* 

  

 implementation_stmts +=  

 (Input_def | Output_def | Apply_step )+ 

  

endimplementation 

 Inputs are named elements in the LEMON language that 
define the data required to execute a template implementation. 
They can be: a single input or a list of inputs, and either primitive 
types (e.g., text, number, boolean) or instances of classes from 
the referenced metamodels. Each input may have a predefined 
value or be marked as ask, meaning its value must be provided 
interactively during template reuse using a query. In addition, 
inputs can include checks to validate specific logic, expected 
attributes to enforce mandatory values, and extras—extended 
attributes not originally defined in the metamodel but required 
for the template implementation. To express the input element 
formally, in the following paragraphs we show the LEMON 
language syntax using the EBNF, starting with input definition 
and followed by each sub statement.  

Listing: Input_definition 
(input | inputlist) id = ID 

  type data_type =  

  (number | text | bool …) | 

  ([Class_reference_def | ReferenceName]) 

  description description_text_term = Term 

  (value | defaultvalue) value_term = Term | ask 

 (query_def = Query_def)? 

  additional_input_def +=  

  (Extra_def | Expected_def | Checking_def )*   

(endinput | endinputlist) 

• Single Input: Represents an input that holds only one 
value, which may be null, a primitive, or a class 
instance. 

• Input List: Represents an input that contains a list of 
values, which may be empty or composed of primitive 
values or class instances. 

• Primitive Input: Indicates that the input type is a 
primitive, such as text, number, or boolean. 

• Class Input: Indicates that the input type is an instance 
of a class defined in the referenced metamodel—
conceptually equivalent to an object in object-oriented 
programming. 

• Default Value: A constant value assigned to the input. 
It does not change and is always resolved to the default 
when the template is reused. 

• Ask Value: A dynamic value provided at the time of 
template reuse. Ask values are mutable and referenced 
by parameters in the fixed or extended parts. 

• Query for Ask Value from Class Input: When an ask 
value is defined over a class input, it may include a 
query that retrieves candidate instances from the 
MDSD tool. Queries are defined using a SQL-like 
syntax that allows selecting from class references, 
joining other classes via references or attributes, and 
applying filters with where conditions. The result set is 
then used during template reuse to select one or more 
options, depending on whether the input is single input 
or a list. 

Listing: Query_definition 
query  

 select (distinct)? from class_def_reference = 

[Class_def | ReferenceName] 

  

query_join_def += (join class_join_reference = 

[Class_def | ReferenceName] on (reference | 

attribute)  

join_on_left_reference = [Class_reference_def | 

Class_attribute_def | ReferenceName]  

= 

Join_on_right_reference = [Class_reference_def | 

Class_attribute_def | ReferenceName])* 

 

(where where_condition_term = Term)? 

endquery 

• Extras: Inputs may require additional attributes that 
are not defined in the original metamodel class. Extras 
are named elements used to extend a class instance 
within the scope of a specific input, without altering 
the metamodel itself. Extras are limited to primitive 
types. 

Listing: Extra_definition 
extra id = ID 

 type data_type = (number | text | bool …)  

 description description_text_term = Term 

endextra 

• Expected: Inputs may require validation to ensure that 
certain attributes from a class are provided when the 
template is reused. The expected element reference a 
class attribute, making it mandatory before the input 
can be propagated further in the implementation 
during template reuse. 

Listing: Expected_definition 
expected ref_attribute = [Attriubte_def | 

ReferenceName] 

 (defaultvalue default_value = Term)? 

endextra 

• Checking. Beyond mandatory values, inputs may 
require additional validations to ensure specific 
constraints are satisfied (e.g., the input value must be 
greater than 0). A checking is a named element that 
allows the specification of logic-level validations using 
code blocks, such as for loops, if-else conditions, and 



mathematical operations. It includes a dedicated check 
statement that evaluates a condition and, if not met, 
triggers an else message to provide feedback during 
template reuse. 

Listing: Checking_definition 
checking id = ID 

 checking_content_def +=  

(Code_Block |  

check condition_term = Term else text_term = Term)* 

endchecking 

 Outputs are named elements that represent the metamodel 
class instances (i.e., the resulting models) to be stored into an 
MDSD tool after reusing a template. They can be a single 
output or a list of outputs and must be instances of classes from 
the referenced metamodels—primitive types are not allowed. 
Additionally, outputs can include checks to validate specific 
conditions and ensure that the generated models satisfy intended 
constraints. To express the output element formally, in the 
following paragraphs we show the LEMON language syntax 
using the EBNF, starting with output definition and followed 
by the semantics of the element. 

Listing: Output_definition 
(output | outputlist) id = ID 

  type data_type =  

  ([Class_reference_def | ReferenceName]) 

  description description_text_term = Term 

  additional_output_def += Checking_def*   

(endoutput | endoutputlist) 

• Single Output: Indicates that the output contains only 
one value, which may be null or an instance of a 
metamodel class 

• Output list: Represents an output composed of 
multiple values, either as an empty list or a collection 
of metamodel class instances. 

• Output Value: Outputs must always be instances of 
classes defined in the metamodel; primitive types are 
not permitted 

• Checking. Outputs may include validation logic to 
ensure they meet specific constraints. These checks 
reuse the same mechanism defined for inputs (see 
Checking_def Listing). 

 To transform inputs into outputs, the LEMON language 
provides the apply step, as a named element that defines the 
logic for how a specific set of inputs should be processed to 
produce outputs. It does so by referencing a reusable step 
definition, which encapsulates the transformation logic. 
Conceptually, an apply step is equivalent to invoking a function 
in programming languages or calling a transformation rule in 
MDSD. Apply step can be invoked within either a template 
implementation or another step definition. Apply steps can be 
configured to iterate over lists, being applied conditionally, or 
run once depending on the data and logic. Additionally, apply 
steps map inputs and outputs from higher-level contexts 
from/to the referenced step. To express the apply step element 
formally, in the following paragraphs we show the LEMON 
language syntax using the EBNF, starting with apply step 
definition and followed by the definition of step. 

 

Listing: Apply_step_definition 
applystep step_reference =  

  [Step_def | ReferenceName] as id = ID 

 (foreach for_each_var_identifier = [ReferenceName]  

 in for_each_set_identifier = [ReferenceName])? 

 (if apply_step_condition = Term)? 

 having as input  

  having_as_input_ref += Having_as_input_def* 

 (having as output 

  having_as_output_ref += Having_as_output_def*)? 

endapplystep 

• For-each Apply Step. Applies the referenced step 
multiple times, once for each element in a list, as soon 
as the required inputs are provided. 

• Conditional Apply Step. Executes the step only once, 
provided that a specified condition evaluates to true 
and the inputs are available. 

• Conditional for-each apply step. Combines both for-
each and condition apply steps. The step is applied to 
each list element, but only if the condition is satisfied 
on the level of the individual list element. 

• One-time apply step. Applies the step exactly once, 
without any looping or conditional logic, as soon as the 
inputs are provided. 

• Having as input. Specifies the mapping of input values 
from a higher-level context (such as another step or the 
template implementation) to the inputs of the 
referenced step. These values may reference inputs, 
outputs, or use the ask operator. 

Listing: Having_as_input_definition 
[ Input_def | ReferenceName ] =  

(ask | [Input_def | ReferenceName]) 

• Having as output. Defines the assignment (from left to 
right) between the outputs of the referenced step and 
those of the enclosing context, such as an 
implementation or step. If no explicit output 
mappings are provided, the outputs from the 
referenced step are implicitly propagated to the upper-
level context. 

Listing: Having_as_output_definition 
[Output_def | ReferenceName ] =  

[Output_def | ReferenceName] 

 Finally, a step is a named element that encapsulates 
transformation logic along with its associated inputs and 
outputs. It serves as a reusable definition that can be invoked 
from one or more apply steps. Conceptually, a step corresponds 
to the definition of a transformation rule in MDSD or the 
definition of a function in programming languages. Steps may 
also include nested apply steps, enabling composition and 
recursion. The core transformation logic is defined within an 
apply block, which is a code block. To express the step element 
formally, in the following listing we show the LEMON language 
syntax using the EBNF. 

Listing X: Step_definition 
step id = ID 

 step_inputs += Input_def* 

 step_outputs += Output_def* 

 step_apply_steps += Apply_step_def* 

 apply 



   code_blocks_def = Code_Block  

 endapply 

endstep 

We illustrate the template implementation in our running 

example with an implementation for the “List and Search in 

PDS” template (see Annex VII.D). It takes a query name 

(I_QueryName) and a selected table (I_Table) as inputs, and 

produces a query model (O_QueryModel) as output. The 

implementation is composed of two apply steps: i) one to 

create the query model from the given name, and ii) another to 

relate the created model to the selected table. The output of the 

second step is propagated as the final template 

implementation output, having a query model as the result of 

reusing the “List and Search in PDS” pattern template. We 

provide specific examples on input (see Annex VII.E), output 

(see Annex VII.F), apply step (see Annex VII.G), and step 

definitions (see Annex VII.H), to allow the template 

implementation as required from Whatscount following the 

LEMON language syntax.  

V. PROOF OF CONCEPT IMPLEMENTATION: EXECUTION 

ENVIRONMENT FOR THE LEMON LANGUAGE 

To make a proof of concept of the LEMON language, we 
implemented an execution environment tailored to the language 
EBNF. This execution environment comprises three main 
components: the language editor, the pattern catalogue, and the 
interpreter. We made available the proof of concept of the 
execution environment in our external repository [21]. 

 

Fig. 1. LEMON Language Execution Environment C4 Container Diagram. 

A. LEMON Language Editor 

The LEMON language editor is built using Eclipse XText 

[22], relying on the Eclipse Modelling Framework [23]. It 

provides support for lexical, syntactic, and semantic analysis of 

LEMON language based on the EBNF grammar introduced 

earlier. Through this editor, requirements engineers can 

produce .lemon files that capture requirement patterns, 

templates, metamodels, and steps (see Fig. 2). 

 

Fig. 2. The LEMON Language Eclipse XText Editor. 

B. Pattern Catalogue 

The pattern catalogue is a MongoDB non-relational 

database that stores the .lemon files generated by the language 

editor. It allows users to search, retrieve, and reuse requirement 

patterns and templates. An external front-end interface 

consumes metadata from stored patterns, templates, fixed 

parts, extended parts, inputs, outputs, and steps enabling 

recommendation and filtering of relevant requirement 

specifications (see Fig. 3)  

 

Fig. 3. Mock-up requirement pattern catalogue. 

C. Interpreter 

The LEMON interpreter is a .NET application written in C# 

that exposes a RESTful API using ASP.NET Core. This API 

serves both the catalogue (to load and store .lemon files) and 

external front-ends (to provide inputs and drive pattern reuse). 



It supports HTTP operations to submit, update, and delete 

inputs, and to retrieve execution feedback (see Fig. 4).  

  

Fig. 4. LEMON Interpreter RESTFul API Example. 

The interpreter supports both basic and advanced execution 

operations. Core capabilities include arithmetic operations, 

memory management, and control flows such as conditionals 

and loops. More advanced features include undo/redo handling, 

automatic data bindings among inputs and outputs, and 

runtime error detection. Once a pattern template is loaded, the 

interpreter initializes a context-bound template instance, 

generates corresponding input/output objects, and evaluates 

steps, queries, and checks (see Fig. 5).  

 

Fig. 5. LEMON Interpreter Abstractions. 

 The code execution workflow is as follows: i) the 

interpreter identifies inputs marked as "ask"; ii) as inputs are 

provided, values propagate to dependent apply steps via having 

as input; iii) nested apply steps recursively evaluate available 

inputs; iv) once inputs are resolved, apply are executed; v) 

finally, outputs are validated and stored. This process is 

triggered whenever an input value changes (see Fig. 6). 

 

Fig. 6. LEMON Code Execution. 

As inputs and outputs are linked to the MDSD tool's 

metamodel, the interpreter can query data via queries and 

persist generated outputs into the tool’s environment, 

completing the requirement pattern reuse for MDSD tools. In 

Fig. 7, we show how the query model output after reusing the 

implemented template of our running example at Whatscount 

is stored in PDS.  

 

Fig. 7.  Example Model generated into an integrated MDSD tool: A Query 

Model in PDS. 

VI. CONCLUSIONS AND FUTURE WORK 

 In this paper, we introduced the LEMON language—a 
domain-specific language designed to bridge the gap between 
reusable requirement patterns and Model-Driven Software 
Development (MDSD) tools. We presented the EBNF grammar 
of the language, described how it enables the specification of 
patterns and templates, and showed how it connects to MDSD 
tool metamodels through template implementations. 
Furthermore, we demonstrated how the LEMON language can 
be executed to allow requirement patterns reuse and integration 
with MDSD tools by proposing an LEMON execution 
environment. The LEMON execution environment includes a 
language editor, catalogue, and interpreter.  

 As part of our ongoing work on the LEMON language, we 
identify open research directions as future work: 

 RQ1. How do requirements engineers use the LEMON 
language to specify requirement patterns for MDSD tools? 
While this paper provides the technical foundation and language 
design, questions remain regarding the actual usability of 
LEMON in real-world settings. Empirical studies are needed to 
observe how requirements engineers create, modify, and reuse 



patterns using LEMON, and to evaluate their efficiency and 
effectiveness when doing so. Additionally, aspects such as 
support for pattern composition and integration with various 
MDSD tools must be explored to understand the practical impact 
of LEMON in diverse MDSD tools.  

 RQ2. Can the specification of requirement patterns be 
automated using the LEMON language as a foundation?  A key 
advantage of having a domain-specific language is the 
possibility of automating the generation and validation of 
requirement patterns. Inspired by recent work using Large 
Language Models (LLMs) for requirement patterns 
specification and reuse [9], this research question aims to 
investigate whether Artificial Intelligence techniques such as 
LLMs can be leveraged to automatically generate LEMON-
conformant specifications. Such specifications could then be 
checked for consistency using the language’s EBNF grammar. 
This research question would explore how the LEMON 
language can be used to systematically build catalogs of 
patterns, supported by exploratory research on existing 
application templates, requirement samples, and MDSD tool 
(a.k.a. LowCode/NoCode tools) resources available in industry 
[13], [14]. 

 RQ3. How do requirements engineers interact with the 
pattern catalogue and reuse interface? The LEMON language 
serves as an enabler for specifying, retrieving, and reusing 
requirement patterns within MDSD tools. However, the 
usability and effectiveness of the external front-ends for 
interacting with the catalogue and for reusing the requirement 
patterns specified in LEMON remain open questions. Future 
research should include empirical evaluations and user studies 
to assess how well requirements engineers interact with these 
components. Design iterations and interface prototypes will also 
be necessary to determine how these external front-end systems 
can best support the reuse of requirement patterns in MDSD 
tools.  

 These research questions aim to extend the technical 
contributions of this paper and establish a pathway toward 
realizing the full potential of the LEMON language in bridging 
the gap between requirements engineering and model-driven 
software development through requirement pattern reuse. 

VII. ANNEX: LEMON LANGUAGE EXAMPLE 

This annex presents the listings for illustrating the use of the 

LEMON language at Whatscount. Each listing is referenced in 

the text. 

A. Pattern Specification Example 

pattern CreateList 

 metadata 

  name “Searchable and Editable List” 

  description “This pattern supports presenting 

structured data in a list that users can search, 

filter, and edit—common in scenarios requiring data 

overview and manipulation, like user management or 

inventory control.” 

  goal “Enable users to efficiently view, search 

and edit structured data records.” 

  author “Whatscount” 

  keywords “Data List”, “Search functionality”, 

“Editable Entries”, “Filtering” 

   

  sources 

   source “Internal project experience with data 

management” url “https://...” 

      source “UI/UX reference diagram for list 

manipulation” img “example.png” 

  endsources 

   

  classified as “Functional Requirement” 

 

 endmetadata 

endpattern 

B. Template Specification Example 

template F_PDSListToSearchAndEdit  

  from pattern CreateList 

  name “List and Search in PDS” 

  description “This template implements the 

Searchable and Editable List pattern within the 

Posity Design Studio (PDS). It provides requirement 

engineers with a structured approach to define 

QueryModels that enable dynamic listing, searching, 

and editing of domain-specific data. By guiding 

users through the setup of core data tables and 

their relationships, this template supports the 

efficient visualisation of structured records” 

 author “Whatscount and Posity AG” 

 keywords “Visualization”, “QueryModel”, “Search”, 

“PDS” 

 version “1.0” 

  

 fixedpart FP_PDSGenericListAndEdit 

   name “Generic QueryModel for Listing and 

Editing”  

    description “This fixed part defines the 

essential structure for creating a QueryModel in 

PDS for listing, searching, and editing data” 

    parameter I_QueryName “Name of the query model” 

as “Data”, “Form”, “Object” 

    parameter I_Table “Primary data source” as 

“Object”, “Data” 

 endfixedpart 

   

 extendedpart EP_DigitalHealthListAndSearchTestData 

   name “Digital Health Test Data View”  

   description “This extended part specialises the 

generic list and search pattern template for 

digital health applications. As a result, a 

QueryModel is created focused on visualizing and 

navigating test data, such as vital signs or lab 

results.” 

   parameter I_QueryName “What is the name of the 

health test to visualize?” as “Health Test”, “Blood 

Pressure Test”, “Cell count panel” 

   parameter I_Table “Where is the test data 

stored?” as “Blood pressure observation”, “Vital 

sign observation”, “EPD”  

 endextendedpart 

 

 implementation … 

 endimplementation 

endtemplate 

 

C. Metamodel Definition Example 

metamodel PosityDesignStudioMetamodel 

 class Table 

   attribute Name 

   type text 

   default “Default table name” 

    primarykey true 

   endattribute 

 endclass 

  

 class QueryModel 



  attribute Name 

   type text  

    default “Default Query model name” 

    primarykey true 

  endattribute 

  reference FKTableOfQueryModel 

 type Table 

 ordered false 

 unique false 

 keys Table.Name 

 lowerbound 0 

 upperbound * 

  endreference 

 endclass 

endmetamodel 

D. Template Implementation Example 

template F_PDSListToSearchAndEdit from pattern 
CreateList 

  … 

implementation  PDS_Implementation 

 tools PosityDesignStudioMetamodel 

 

 input I_QueryName 

  type text 

  description “Name of the query model” 

  value ask  

 endinput 

  

 input I_Table 

  type PosityDesignStudioMetamodel.Table 

   … // See Input Definition example 

 endinput 

  

 output O_QueryModel 

   type PosityDesignStudioMetamodel.O_QueryModel 

   … // See Output Definition example  

 endoutput 

 

 //First the query model need to be created based 

 //On the provided name 

 applystep S_CreateNamedQueryModel  

           as s_first_create_query_model 

   having as input  

  I_Name = I_QueryName 

 endapplystep 

 

 //Then: The created query model is related to 

 //the selected Table (see example Step def) 

 applystep S_RelateQueryModelWithTable  

          as s_second_relate_table_to_query_model  

 having as input  

  I_SelectedTable = I_Table 

  I_QueryModel = s_first_create_query_model.O_QueryModel 

 having as output 

  O_QueryModel = O_RelatedQueryModel 

 endapplystep 

 

endimplementation 
endtemplate 

E. Input definition example 

input I_Table  

  type PosityDesignStudioMetamodel.Table 

  description “Contains a Table for creating a 

QueryModel out of it” 

  value ask 

  query  

    select distinct from PosityDesignStudioMetamodel.Table 

  endquery 

  expected I_Table.Name endexpected 

  extra e_is_header 

    type bool  

    description “Determines wheter the selected 

Table is the Header of the QueryModel”  

  endextra 

  checking C_has_a_name 

    check I_Table.Name <> “” else “The table name 

can not be an empty string” 

  endchecking 

endinput 

F. Output definition example 

output O_QueryModel 

 type PosityDesignStudioMetamodel.QueryModel 

  description "Final Query Model" 

  checking C_has_valid_name 

   check O_QueryModel <> null else “QueryModel Name 

can not be empty” 

  endchecking 

endoutput 

G. Apply step definition example 

applystep S_RelateQueryModelWithTable  

          as s_second_relate_table_to_query_model  

 having as input  

  I_SelectedTable = I_Table 

  I_QueryModel = s_first_create_query_model.O_QueryModel 

 having as output 

  O_QueryModel = O_RelatedQueryModel 

endapplystep 

H. Step definition example 

Listing X: Example Step_definition 
step S_RelateQueryModelWithTable  

 input I_SelectedTable 

   type PosityDesignStudioMetamodel.Table 

   … 

 endinput 

 input I_QueryModelToRelate 

   type PosityDesignStudioMetamodel.QueryModel 

   … 

 endinput 

 output O_RelatedQueryModel 

   type PosityDesignStudioMetamodel.QueryModel 

   … 

 endoutput 

 apply 

   O_RelatedQueryModel = I_QueryModelToRelate  

   relate O_RelatedQueryModel  

   to I_SelectedTable in FKTableOfQueryModel 

 endapply 

endstep 
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