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Abstract—Diagrams can be valuable tools in requirements
engineering to establish a shared understanding between software
engineers and stakeholders. However, interacting with these
visual representations can be challenging for some stakeholders
who prefer textual descriptions and may need support to inter-
pret notation elements and understand the diagram structure
and meaning. To address this need, we explore the use of Large
Language Models to effectively assist stakeholders interacting
with diagrams by providing automatic textual explanations and
contextual guidance. Specifically, we aim to design and evaluate
with stakeholders an interactive layer (integrated into an end-
user-oriented modelling tool) that provides automatic diagram
explanations in natural language. As a first step toward our
research objective, this paper investigates the capability of GPT4
to generate appropriate textual descriptions from domain models.
We use a test data set consisting of UML class diagrams in
various formats, belonging to the domain of digital agriculture,
and develop a set of prompts to generate the interactive ex-
planatory layer. We conduct a technical evaluation of the output,
focusing on correctness, completeness, and understandability. The
results provide valuable insights to inform future design and
research, while also revealing potential challenges in real-world
applications.

I. INTRODUCTION

Diagrams play an important role in requirements engineer-
ing (RE) by providing structured and unambiguous representa-
tions of system requirements, processes, goals and interactions,
to support subsequent development [1]. The adoption of mod-
elling notations such as UML [2], iStar [3], [4], KAOS [5],
URN [6], BPMN [7], promotes consistency and interoperabil-
ity, fosters a shared understanding among developers, enables
tool-supported analysis, transformation, and automation [8].

The overarching goal of our ongoing research is to in-
vestigate to what extent MoDRE notations can be applied
to address the challenge of co-designing digital solutions in
socio-technical systems. We frame our research within the
context of digital agriculture, which is characterized by the
integration of digital technologies into traditional practices,
resulting in complex socio-technical transformations [9]. This
domain involves a diverse range of stakeholders with different
backgrounds and skills and requires multidisciplinary expertise
to effectively address social, economic, environmental, and
technological challenges [10]. The adoption of digital solutions
in agriculture necessitates not only technical innovation but

also careful consideration of the impact within real-world rural
contexts [11], underscoring the need for collaborative and
context-sensitive RE approaches to innovation [12].

This paper builds on previous findings from our empiri-
cal research in the realm of RE and end-user development
(EUD) [13]. In [14] we introduced a RE method for socio-
technical process modelling in digital agriculture. The method
applies a set of MoDRE notations, namely iStar, UML, and
BPMN to represent the process transformation after the intro-
duction of digital technologies, aiming to support the collabo-
rative impact assessment of process reengineering. Following
the design science approach [15], we validated the proposed
method with domain experts through a pilot study. Currently,
the method is being evaluated through action research in 20
real agricultural contexts within the EU-funded project Max-
imising the co-benefits of agricultural digitalisation through
conducive digital ecosystems (CODECS) [16]. In [17], we
proposed a formalisation procedure that supports agronomists
in applying the method in real-world contexts, and we report
our experience. In [18] we introduced ModeLLer, a prototype
of an EUD web tool relying on a block-based visual editor
that simultaneously operates block-to-model transformation in
multiple semi-formal notations while the end-user is assem-
bling blocks following instructions prompted on the block.
To evaluate the tool, we carried out a user study asking 30
participants with no previous expertise in formal notations to
model a scenario of digital agriculture [19].

In line with previous research [20], the results we achieved
thus far confirm that, under proper guidance, non-technical
stakeholders can actively contribute to various phases of a
RE process — including elicitation and modelling — and
that their involvement can add value to the overall process.
However, challenges may arise when stakeholders interact
with diagrams, as diagrammatic notations can be difficult to
understand, and some stakeholders may have a preference
for textual descriptions. Furthermore, interpreting notation
elements and grasping the overall structure and meaning of
diagrams often requires significant time and effort [21].

In this study, we take initial steps toward exploring the
extent to which generative large language models (LLMs)
can reduce the cognitive effort required to interact with di-



agrammatic representations. We aim to design a web-based
interactive explanatory layer, powered by LLM-generated text,
that complements the diagram by offering natural language
descriptions and contextual support.

Prior to conducting a user study, we aim to perform a
preliminary technical evaluation of the quality of the out-
put produced by LLMs when transforming diagrams into
natural language. In this paper, we present our work in
progress and we focus on one of the notations included in
our socio-technical process modelling method — UML class
diagrams — and we execute two prompts in ChatGPT. The
first prompt generates a textual description of the model
tailored to non-technical users. The second prompt creates
a table containing the classes extracted from the diagram,
a contextual description of the class role and interaction, a
classification of the class, size and coordinates indicating the
position of the class within the diagram. Results from the
prompts should provide data to build an interactive layer
to overlay the diagram with contextual tooltips with class
explanation. We execute the prompts both in GPT-40 and GPT-
4.1, and we add some variations by testing the prompts with
different formats, specifically raster image, vector, and code.
We evaluate the output produced by assessing completeness,
correctness, understandability, and terminological alignment.

Results show that the output produced is of generally good
quality, although it lacks accuracy in describing more granular
structures, and there are no substantial differences between the
GPT models tested. The complete documentation of this study
is available in the supplementary material [22].

II. BACKGROUND AND RELATED WORK

Diagrams are widely used in RE for representing several
aspects of system requirements, entities involved, their rela-
tionships, components, and interactions. These visual represen-
tations relying on MoDRE notations are typically developed by
RE experts after requirements elicitation from domain experts.
Stakeholders can be subsequently involved in the diagram
validation phase, leading to the refinement of the represen-
tation to ensure they accurately reflect stakeholders’ needs
and expectations [23]. This process is essential for achieving
shared understanding among developers and stakeholders and
minimise the risk of misunderstanding and overlooked require-
ments before moving on to design and implementation [24].

In the realm of business process modelling (BPM), Leopold
et al. [21] addressed the challenge of supporting stakeholders
in validating models through automated techniques for model-
to-text transformation based on natural language processing.
The evaluation was conducted in two phases: a technical
evaluation, consisting of a comparative assessment of the
structure and semantics of the generated texts against original
manual descriptions, and a user study asking participants to
reconstruct process models from the generated texts.

The advent of LLMs has provided potential support to BPM,
thereby recent research has explored how LLMs, such as
GPT, Gemini, LLama, can be leveraged for generating textual

descriptions to assist stakeholders with modelling understand-
ing [25], and for streamlining model creation [26]. Kourani
et al. [27] proposed ProMOAI, a web tool that leverages
LLMs to automatically generate process models from textual
descriptions, handling errors and supporting iterative model
refinement through user input. The tool interface accepts dif-
ferent input types—textual, model, data—and performs trans-
formation according to input format, as well as, Al provider
selected by the user.

Although primarily focused on BPM, these studies suggest
that LLMs can serve as interpreters between formal models
and human-readable content, a capability that aligns with our
focus on interactive class diagram explanations.

A large number of RE studies have recently focused on
automating model generation through machine learning tech-
niques and LLMs, particularly targeting the generation of do-
main models [23], [24], [28], [29]. Ferrari et al. [29] evaluated
the use of GPT-3.5 to generate UML sequence diagrams from
industrial requirements documents in natural language and
evaluated the generated diagrams using five quality criteria:
completeness, correctness, adherence to the standard, degree
of understandability, and terminological alignment.

Despite the growing body of research in this area, a gap re-
mains in the development of approaches specifically designed
to support non-technical stakeholders in diagram interaction.
Our work seeks to address this gap by investigating how LLMs
can be leveraged to produce textual explanations that support
the understanding of diagrams.

III. TECHNICAL EVALUATION

Adopting the approach by Leopold et al. [21], we conducted
a technical evaluation of the output generated by LLMs as a
preliminary step before engaging participants in a user study.

A. UML class diagrams

We selected UML class diagrams, which are among the
notations incorporated in our socio-technical process mod-
elling method. These representations are used to depict the
structure of the process to-be, including all involved actors,
digital systems, components, and natural resources, as well as
the relationships among these entities. As we plan to create
an Al-generated web-based layer to integrate into our EUD
tool, we selected test data that reflects real-world contexts
in which stakeholders may utilise a variety of diagramming
tools. In this experiment, we assess diagrams created with:
(1) StarUML and (2) draw.io, both recommended in the
formalisation procedure [17], and (3) ModeLLer [18], which
incorporates the PlantUML library and generates diagrams in
the PlantUML style. We added a first variant by considering
multiple formats supported by the tools: PNG, SVG, XMI,
PlantUML and drawio.

Table I summarises the three real-world cases extracted from
the CODECS project, detailing UML structure and format
specifications. Diagram 1 represents an IoT system for the
remote monitoring of vineyard conditions; diagram 2 depicts
a scanner system for real-time soil analysis; diagram 3 refers
to a smart irrigation system for remote control of irrigation.



TABLE I: Summary of the three real-world cases extracted from the CODECS project and their format specifications.

Case Description UML Software Format
An IoT monitoring system based on sensors installed | No: nodes #9; arches #12 png
1 | IoT vineyard monitoring system | on-field that measures several parameters in the Types: class, aggregation, StartUML | svg
vineyard to optimize organic treatments. direct association Xxmi
. . No: nodes #12; arches #20 png
. A soil scanner with sensors and Al-based software . .
2 | Soil scanner . L. . Types: class, aggregation, draw.io svg
that measures soil parameters to optimise fertilisation. ; o -
direct association drawio
. No: nodes #8; arches #9 png
. An Al-based system to monitor field and weather
3 | Smart irrigation . L. Types: class, ModeLLer | PlantUML
conditions and manage irrigation : o -
direct association xmi

B. Prompt engineering

For executing prompts, we selected GPT, a prominent LLM
that has recently introduced vision capabilities (gpt-image-1),
enabling image input understanding. We ran our prompts using
the web user interface and adhered to the prompt engineering
guidelines provided in the OpenAl Cookbook!. In addition,
we included a comparative variant by evaluating both GPT-
40 — the first model to natively implement gpt-image-1 —
and GPT-4.1, which is declared to feature improved instruction
following and context examples.

We designed two prompts: the first assesses GPT in de-
scribing diagrams; the second explores GPT capability to
extract structural and spatial information adding contextual
descriptions. The two prompts are as follows:

Prompt 1 “Write a summary that explains the uploaded
diagram to a non-technical audience.”

Prompt 2 “First, analyse the uploaded UML class diagram.
Then, extract all classes and create a table with a row for
each class and a column named NAME with the class name.
Then, create a column DESCRIPTION containing a 20-30
word description of the class that explains to a non-technical
audience the role of the class within the system and opera-
tions performed in association with other connected classes.
Then, create a column TYPE containing the type of entity
represented, either digital, actor/organisation, natural resource
or other type of resource. Then, create additional columns:
WIDTH, containing the class width; HEIGHT, containing the
class height; X, containing the x-position of the class; Y,
containing the y-position of the class. Convert all values into
relative values. Return the complete table”.

In prompt 1, we did not impose length restrictions, as
diagrams may vary in size; however we specified the target,
consisting of users not having knowledge of formal notations.

Prompt 2 is oriented towards the creation of an interactive
layer with tooltips, with content returned in the form of a table.
The prompt is articulated in 4 steps requiring respectively to
(1) extract classes, (2) write short descriptions based on the
class role and neighboring relationships, (3) classify classes
into human, natural or technological entities, and (4) extract
class size and coordinates within the diagram. Following GPT
guidelines, we structured and ran prompt 2 as a chain-of-

Thttp://github.com/openai/openai-cookbook (last accessed: 5 June 2025)

thought in GPT-4.1, whereas in GPT-40, we decomposed the
prompt into separate, sequential instructions.

To clarify our objectives, Fig. 1 illustrates an example of
the intended output for the interactive layer. While the dia-
gram itself is human-generated, the accompanying explanatory
content is produced using the designed prompts.

C. Evaluation criteria

We were inspired by previous work from Ferrari et al. [29]
and adopted the four quality criteria that are also relevant to
our context. We adapted the statements such that they are
applicable to diagram-to-text transformation:

Completeness: the text covers the content of all the (main)
entities with a sufficient degree of detail to explain the content
of the model to potential stakeholders.

Correctness: the text describes a system structure that is
coherent and consistent with the diagram.

Degree of understandability: the text is sufficiently clear,
given the complexity of the diagram, and does not contain
redundancies.

Terminological alignment: the terminology used in the gen-
erated text aligns with the one used in the diagram.

We introduced a fifth criterion which is used to assess
coordinates in Prompt 2:

Acceptability the extent to which the detected class positions
correspond to their true placement in the source model.
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Fig. 1: Example of LLM-generated interactive layer.
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D. Evaluation approach

We assessed largely the same criteria across both prompts,
introducing minor variations in the evaluation approach.

1) Prompt 1: to evaluate the summaries generated by
Prompt 1, we assessed each criterion individually. Both
prompts were independently evaluated by two raters using a 5-
point Likert scale ranging from “1 — Not fulfilled at all” to “5 —
Completely fulfilled.” The ratings were averaged to determine
inter-rater agreement. Additionally, a text field (“Notes™) was
included to document any observations or comments regarding
the evaluations.

2) Prompt 2: to evaluate the table obtained from Prompt
2, we performed independent evaluations for each column in
four steps:

a) Class extraction: this step focuses on completeness,
considering the following metrics: true positives (nodes cor-
rectly detected), false negatives (nodes missed), and false
positives (nodes incorrectly identified). As this evaluation is
objective, it is conducted once by a single evaluator.

b) Tooltip description: this addresses three quality crite-
ria: completeness, correctness and degree of understandability,
using the same 5-point Likert scale applied in Prompt 1, except
for completeness, which is assessed objectively as a single
accuracy measure based on the ratio of edges mentioned to
incident edges. Terminological alignment is not included, as
the explanatory and concise nature of tooltips naturally results
in terminology differing from the diagram.

¢) Classification: this evaluation step is assessed once
using a boolean value to indicate correct or incorrect classifi-
cation, along with a note field for additional observations.

d) Positioning: this evaluation step is addressed through
the criterion of acceptability and is evaluated through the 5-
point Likert scale applied above, along with the “Notes” field.

IV. EXECUTION AND RESULTS

We started our prompts with the instruction “Execute this
prompt in isolation,” requesting to perform actions without
considering previous messages. Both prompts were evaluated
independently by the first and second author, and the results
from both evaluations were averaged.

A. Diagram summary

Prompt 1 was repeated on 18 instances, considering all cases
and format variants (see Table I) and GPT models 40 and 4.1.
The average word count for all 18 summaries is 220 words,
ranging from 176 to 260. Notably, GPT-4.1 outputs are longer
(239 words) compared to GPT-40 (202 words).

The average output quality is high. Both GPT models
achieve scores between 4 and 5 for all dimensions. Overall,
there is no significant difference between cases, formats or
models. Only the correctness dimension shows slightly more
variability, with GPT-4.1 generally yielding constantly better
results.

The notes added by the evaluators suggest that several
outputs included extra content not present in the original
data. Furthermore, the text frequently exhibited subjective

commentary and interpretive statements, for example, “more
sustainable practices”. There were a few instances of hal-
lucination (for example, adding unmentioned operations of
calibrations), as well as some omissions.

B. Tooltips table

Prompt 2 was executed on 10 instances, covering all cases
and both models, with a focus on input formats of type image.
Thus, only PNG and SVG formats were considered, while
XMI, drawio and PlantUML were excluded, as these do not
contain the spatial information required for the evaluation.
The execution returned 10 tables containing one row for each
detected class, and columns with class name, description,
classification, size and localisation data (coordinates).

1) Class extraction: Across all cases, GPT-4.1 achieves
perfect scores for precision (calculated as the number of nodes
correctly detected over the number of nodes correctly detected
plus the number of nodes wrongly detected) and recall (the
number of nodes correctly detected over the nodes correctly
detected plus the number of nodes missing). In contrast, GPT-
40 shows some variability, with lower scores in case 1 for both
variants (0.57 and 0.75 for precision; 0.44 and 1.00 recall). For
the remaining cases, both GPT models reach perfect scores.

2) Tooltip description: Results for this evaluation step are
presented case by case. In Case 1 - loT on-field, GPT-4.1
outperforms GPT-40 across all metrics and formats. For PNG,
GPT-4.1 shows higher completeness (0.71 vs. 0.54), correct-
ness (4.22 vs. 2.11), and understandability (4.50 vs. 2.22).
In SVG format, Completeness is slightly higher for GPT-4.1
(0.54 vs. 0.46), with correctness similar for both (3.67), while
understandability remains higher for GPT-4.1 (4.17 vs. 4.22).
In Case 2 - Smart Irrigation, completeness differs significantly,
with GPT-40 achieving a much higher score (0.91) compared
to GPT-4.1 (0.41). However, GPT-4.1 outperforms GPT-40
in correctness (4.38 vs. 2.69) and understandability (4.69 vs.
2.69). In Case 3 - Soil Scanner, GPT-4.1 consistently deliv-
ers higher correctness and understandability scores (around
4) for both PNG and SVG, although completeness remains
low (0.30-0.35) and similar to GPT-40. In contrast, GPT-40
achieves lower correctness and understandability (2.25-2.38).
Notes from the evaluators are similar to those observed in
Prompt 1, highlighting some recurring issues and tendencies.
Among issues, it is reported that aggregation relationships are
frequently not recognised or properly explained or important
piece of information are sometimes missing. Among the ten-
dencies, it is reported content additions, such as background,
contextual, or qualitative information, and the inclusion of
positive or promotional language about technology benefits.
Occasional hallucinations are present, such as actions not
depicted in the diagram.

3) Classification: The overall accuracy of classification is
high across all cases, with an average of 91% (9 errors out of
100 instances). GPT-4.1 achieved perfect accuracy (0% error
rate), while GPT-40 committed all 9 errors (18% error rate).
Analysing by case, GPT-40 error rates are higher for Case I
- IoT on-field (27.8%) and Case 3 - smart irrigation (25%),



while for Case 2 - soil scanner are lower (8.3%). The errors
made by GPT-40 are mainly due to empty values — stem-
ming from unextracted classes, which were counted as errors.
However, two instances within Case 3 — weather station and
moisture sensor, were classified as natural resources, instead
of digital. This may indicate a more accurate understanding
of domain-specific concepts by the newer model.

4) Positioning: Results of the Acceptability of detected
class positioning indicate that GPT-4.1 generally achieves
higher scores, consistently reaching 4 or above in most in-
stances. In contrast, GPT-40 shows greater variability and
generally lower scores, with some values at or near 1.
In several cases, all classes were extracted and positioned
close to their actual locations; however, overlaps or minor
misalignments, especially in y-positioning for crowded areas
— were observed, while x-positioning was generally more
accurate. Notably, there are exceptions — such as in Case 2,
format svg —where GPT-40 outperforms GPT-4.1. This output
demonstrated precise mapping with boxes aligned with class
centres and correct sizing.

V. DISCUSSION

Results from prompt executions indicate GPT capability
of producing quality content, with neither model consistently
outperforming the other across all criteria. GPT-4.1 tends to
generate more verbose text and interpretations, while offering
greater accuracy in class detection, classification and position-
ing. Instead, GPT-40 occasionally achieves higher complete-
ness but manifests more variability and reduced quality in
other dimensions. In line with previous research [25], [29],
we observe limitations in contextual understanding and in the
ability to capture granular information, such as aggregations
and labels. Additionally, some instances of hallucinations were
observed, although these could be related to the tendency to
add contextual information and interpretations.

VI. CONCLUSION, LIMITATIONS AND FUTURE WORK

In this study, we conducted an initial investigation into the
extent to which LLMs may support stakeholders in interacting
with diagrams. We acknowledge several limitations, both in
terms of the small number of cases evaluated, the number
of UML elements contained, and LLMs assessed. Despite
these limitations, the results confirm the feasibility of using
GPT models in our specific real-world context and conducting
a study with users. On the one hand, the results obtained
help inform the design of specific features in future applica-
tions, such as adding warnings informing that the interactive
layer is Al-generated, or enabling users to choose model
configurations, as already offered by [27]. On the other hand,
results outline a roadmap for future work, which could involve
experimenting with additional models, testing variable prompt
strategies, and incorporating further evaluation criteria such as
text complexity.
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