Viability Checking and Requirements Completion: How Constraint
Programming Helps State Machines in Performance Requirements
Engineering

Gefei Zhang

Hochschule fiir Technik und Wirtschaft Berlin, Germany
gefei.zhang@htw-berlin.de

Abstract

UML state machines are widely used for modeling
software behavior. We present a proposal of construct-
ing constraint systems out of state machines with per-
formance requirements. Our approach takes into ac-
count hierarchical states and parallel regions, and fa-
cilitates viability checking. Also, missing requirements
can be automatically deduced, which is particularly
valuable in practice. Our approach thus provides a sim-
ple yet useful means for model driven engineering of
requirements engineering.

1. Introduction

UML state machines are widely used for modeling
software behavior. They are considered simple and in-
tuitive, and even deemed to be “the most popular mod-
eling language for reactive components” [2].

While it is straight-forward to incorporate nota-
tions for performance modeling, like such defined by
MARTE [7], in UML state machines, their semantics
may get rather involved. In particular, the most impor-
tant feature of UML state machines is that they are con-
current. More than one states may be active simultane-
ously, and more than one actions may be executed si-
multaneously. Therefore, the dependencies of the states
to each other and their impact on the system perfor-
mance may get obscured. Moreover, it would be de-
sirable to have some mechanism to check the viability
of the performance requirements and detect conflicts, if
any. Also, if for some states and actions their perfor-
mance requirements are still missing, it would be help-
ful to deduce those automatically.

We propose a simple concept of constructing a con-
straint system out of a state machine, which allows us to
employ a constraint solver to check the viability of the

requirements, and deduce missing requirements if nec-
essary. Our proposal takes into account the concurrent
nature of state machines and the states’ dependencies
on each other.

The rest of the paper is organized as follows: in
Sect. 2 we give a brief overview of the syntax and in-
formal semantics of UML state machines. In Sect. 3 we
introduce model elements for performance modeling in
state machines. In Sect. 4 we show how to obtain a con-
straint system out of the state machine, as well as how
to check the viability of the requirements and how to de-
duce missing requirements. Related work is discussed
in Sect. 5 before conclusions are drawn and some future
work is sketched in Sect. 6.

2. UML State Machines

A UML state machine provides a model for the be-
havior of an object or component. Figure 1 shows a
state machine modeling the behavior of a system that
automatically manages the repair of a car in case of
an accident:!, the system is Idle. Upon a car-repair re-
quest (request), it enters the state Running, where it first
charges the credit card of the driver, orders a garage for
the repair, and then, in the state OrderTruckAndCar, it
orders in parallel, i.e., simultaneously, a tow truck and a
rental car. For illustration reasons we suppose it is nec-
essary first to reserve a tow truck and a rental car before
you can order them. When the orders are sent, the state
machine gets idle again.

2.1. Syntax and Informal Semantics
We briefly review the syntax and semantics of

UML state machines according to the UML specifica-
tion [6] by means of Fig. 1. A UML state machine con-

I This example was adapted from [9].

(Running h
entry / logRequest();
exit / logResult();
ldle request Charge Order) (OrderTruckAndCar w |
CreditCard Garage J Reserve Order
TowTruck TowTruck
Reserve Order
RentalCar RentalCar

/

Figure 1. Example: UML state machine

sists of regions which contain vertices and transitions
between vertices. A vertex is either a state, which may
show hierarchically contained regions; or a pseudo state
regulating how transitions are compound in execution.
Transitions are triggered by events and describe, by
leaving and entering states, the possible state changes of
the state machine. The events are drawn from an event
pool associated with the state machine, which receives
events from its own or from different state machines.

A state is simple if it contains no regions (two ex-
amples are Idle and ChargeCreditCard in Fig. 1); a state
is composite if it contains at least one region; a compos-
ite state is said to be orthogonal if it contains more than
one region, visually separated by dashed lines (such as
Running and OrderTruckAndCar). A region may con-
tain state and other vertices. A state, if not on the top-
level itself, must be contained in exactly one region. A
composite state and all the states directly or recursively
contained in it thus build a tree.

A state may also contain an entry and an exit action
(and a do action, which is not relevant for this paper).
The entry action is executed every time the state is en-
tered and gets active, the exit action is executed every
time the state is left and gets inactive. For example,
in Fig. 1, every time Running is activated, the action
logRequest is executed, and every time Running is de-
activated, logResult is executed.

Transitions are triggered by events (e.g. request)
may show guards and may have effects to be executed
when a transition is fired. For simplicity, our running
example does not include guards or effects. Comple-
tion transitions do not have an explicit trigger, instead
they are triggered by an implicit completion event emit-
ted when a state completes all its internal activities. In
Fig. 1, all transitions leaving the states other than Idle
are triggered by completion events.

An initial pseudo state, depicted as a filled circle
(@), represents the starting point for the execution of a

region. A final state, depicted as a circle with a filled
circle inside ((®), represents the completion of its con-
taining region; if all top-level regions of a state ma-
chine are completed then the state machine terminates.
In the very simple example of Fig. 1, the only pseudo
states are the three init vertices . For simplicity, we do
not consider the other kinds of pseudo states (entry and
exit points, shallow and deep history, junction, choice,
and terminate). Final states are not pseudo states in the
UML, but states.

Atrun time, states get activated and deactivated as a
consequence of transitions being fired. The active states
at a stable step in the execution of the state machine
form the active state configuration. Active state con-
figurations are hierarchical: when a composite state is
active, then exactly one state in each of its regions is
also active; when a substate of a composite state is ac-
tive, so is the containing state too. The execution of
the state machine can be viewed as different active state
configurations getting active or inactive upon the state
machine receiving events. Note that for any given re-
gion, at most one direct substate of the region can be
active at any given time, because a state configuration
can contain at most one direct substate of the region.

For example, a workflow of the above state ma-
chine handling an accident, given in terms of active state
configurations, might be as follows: (Idle), (Running,
ChargeCreditCard), (Running, OrderGarage),
(Running, OrderTruckAndCar, ReserveTowTruck,
ReserveRentalCar), (Running, OrderTruckAndCar,
OrderTowTruck, ReserveRentalCar), (Running,
OrderTruckAndCar, OrderTowTruck, OrderRentalCar),
(Running, OrderTruckAndCar, OrderTowTruck, (@),
(Running, OrderTruckAndCar, (®, (@), (Idle).

Usually, it is assumed that a state remains active
for some time and a transition is finished as soon as its
effect is finished. That is, if a transition does not have
an effect, then it does not need any time to get finished.

e . A
Running
{maxDuration = 90s}
entry / logRequest() {minDuration = 1s}
exit / logResult() {minDuration = 1s}
f OrderTruckAndCar h
{maxDuration = 60s}
o dle request ngﬁrg;d Order) {maxStart = 30s, since = request}
Garage
minDuration = 5s Reserve OrderTowTruck
o— minDuration = 20s
WEmaxDuration = 40s]}
o Reserve Order
{RentalCar] [RentaICar] O
N J
N J

Figure 2. Example: UML state machine with performance modeling

Otherwise it takes as much time as its effect does.

In Fig. 1, since the transitions do not have any ef-
fect, they are supposed to get completed immediately.
On the other hand, the states may stay active for some
time. For example, the duration of OrderGarage being
active is the same as the time the for the system to send
a request to the garage and receives a confirmation.

3. Modeling of Performance Requirements

We use a standard extension mechanism, tagged
values, of the UML to define a simple extension of state
machines to incorporate performance modeling. We in-
troduce the following tagged values:

¢ maxDuration to model the maximal time a state can
remain active or an action can take, and

¢ minDuration to model the minimal time a state can
remain active or an action can take.

* maxStart to model the maximum time allowed to
elapse for a state to get activated since the occur-
rence of some event, (to be specified by tagged
value since, see below).

* since to specify the event upon whose occurrence
the start point for the timing of maxStart.

Of these tagged values, maxDuration and maxStart
(together with since) model requirements for the sys-
tem, and minDuration provides a constraint of the sys-
tem.

Figure 2 shows an example of using these tagged
values to model performance requirements of our vend-
ing machine. We require that the state Running re-
main active for a maximum of 90 seconds, that is, the

complete service, starting from charging the credit card
through ordering a tow truck and a rental car, must
be completed within this time. We also require that
OrderTruckAndCar remain active for 60 seconds at most
and therefore the two parallel regions for reserving and
order a tow truck respectively a rental car not take more
than this time. We know that OrderTowTruck will take
at least 20 seconds (minDuration), and require that it re-
main active for at most 40 seconds.

We also gave OrderTruckAndCar the tagged val-
ues maxStart = 30s and since = request. This way we
model the requirement that the state OrderTruckAndCar
get activated no later than 30 seconds after the event oc-
curred.

For ChargeCreditCard, we define a minDuration
of 5 seconds, modeling the time needed to charge the
credit card. Finally, we define a minDuration = 1s for
the entry and exit actions of Running, modeling the time
the logging actions take.

Note that the requirements are not complete yet:
many states do not carry a tagged value which models
its active time. For example, it is not intuitively clear
how much time is allowed for OrderGarage to be active
or how much time the activity of ordering a garage is
allowed to take.

4. Viability Checking and Completion of
Requirements by Constraint Program-
ming

Our state machine, enhanced with performance
modeling, is an excellent starting point to check if the
requirements are viable or if they conflict each other.
Also, it allows us to deduce requirements that are miss-
ing or unknown at first. For example, in Fig. 2, is it sat-

isfiable at all that OrderTruckAndCar remain active for
no more than 60 seconds? How much time can the state
ReserveTowTruck take at most? We show how to use
constraint programming [1] to answer these questions.

4.1. Constraint Programming

Constraint programming is a declarative program-
ming paradigm. A constraint program defines a set of
variables, each having a certain domain, and a set of
constraints imposed on the variables. The constraint
solver can then automatically determine if there exists
a valuation of the variables to satisfy the constraints or
the system is unsatisfiable.

For example?, the following code (written in the
language Mim'Zinc3) defines three variables 1 < x < 20,
9 <y<11,and 150 <z < 161, as well as a constraint
xX-y=z

var 1..20: X;
var 9..11: Vi
var 150..161: z;

constraint xxy = z;

If we ask MiniZinc to solve this constraint sys-
tem by solve satisfy; we will get a solution
x=17,y=9,z=153.

Moreover, many constraint solvers can also find op-
timised solutions. For example, we can ask for a solu-
tion of the above constraint system in which y is maxi-
mized by solve maximize y; and get the solution
x =14,y =11,z = 154, or ask for a z-maximized so-
lution by solve maximize z; and getx =16,y =
10,z = 160.

4.2. Variables

In order to obtain a constraint system out of a state
machine like the one in Fig. 2, we first define a constant
m to model the default maximal duration of a state being
active. In this example, we assume m = 90s, that is,
a state that does not have an explicit maxDuration can
remain active for 90 seconds at most. We then introduce
a variable for each state and each entry or exit action.
The variable should represent the duration of the state
being active or the time needed by the action. Its name
is the name of the state or the action. Its domain is the
range 0..m.

For example, we define thirteen variables for the
state machine in Fig. 2: eleven for the eleven states (in-
cluding the two final states), and two for the two actions

2Adapted from [1].
3https://www.minizinc.org/, accessed on 2025-05-31.

logRequest and logResult. Recall that final states are
also states and therefore cannot be ignored when we are
defining variables for states.

4.3. Constraints

The constraints are defined as follows:

e For each state s with minDuration = d, de-
fine a constraint s > d; for each state s with
maxDuration = d, define a constraint s < d.

For example, for the state ChargeCreditCard in
Fig. 2, we define a constraint ChargeCreditCard >
5, and for OrderTowTruck we have two constraints:
OrderTowTruck > 20 and OrderTowTruck < 40.

* For each entry or exit action a with minDuration =
d, define a constraint a > d; for each entry or exit
action a with maxDuration = d, define a constraint
a<d.

For example, for the entry action logRequest in
Fig. 2 we define logRequest > 1 and for logResult
we define logResult > 1.

* For each sequential path of states contained in a
composite state, define a constraint that the sum of
the values of the states on the path is less than or
equals to the maxDuration of the composite state
minus its entry and exit actions, if any.

For example, for the wupper region of
the state OrderTruckAndCar, we define
ReserveTowTruck + OrderTowTruck + Final; <
OrderTruckAndCar, and for the lower region we
define ReserveRentalCar + OrderRentalCar +
Final, < OrderTruckAndCar. Note that since in
Fig. 2 the final states are not named, we refer to
them as Final; and Final,.

Moreover, for the state Running, which con-
tains one region, we define ChargeCreditCard +
OrderGarage + OrderTruckAndCar < Running —
logRequest — logResult.

 All regions of the same composite state have the
same time of execution. That is, the sum of the
time of the states in every region being active is
the same.

For example, the two regions of
OrderTruckAndCar should have the same duration,
hence ReserveTowTruck + OrderTowTruck +
Final; = ReserveRentalCar + OrderRentalCar +
Final,.

» For each state s with maxStart = d, define a con-
straint that the sum of the path from the target state

of its since transition to the stats is less than or
equals to d.

For example, for OrderTruckAndCar we define
a constraint ChargeCreditCard + OrderGarage <
30.

The complete constraint system for the state
machine of Fig. 2, using the syntax of MiniZinc,
is given in https://people.f4.htw-berlin.
de/~zhangg/car.mzn.

4.4. Validation

Equipped with the constraint system, we are now
in a position to validate the performance requirements.

Satisfiability. It is important to know if the require-
ments are satisfiable or conflicting. To this end, we sim-
ply ask the constraint to solve our constraint system.

For example, we can ask MiniZinc to do this by
solve satisfy; Then MiniZinc will respond that
the requirements given in Fig. 2 are satisfiable and pro-
vide a set of possible values of the variables, i.e., the
duration of the states and the actions.

Deduction of Requirements. Often the requirements
are not complete, i.e., some states or actions do not have
an explicit maxDuration. It may be important to deduce
the performance requirements for these states. To this
end, we simply ask the constraint solver to maximize
the value for the state of action we are interested in.

For example, deducing the maximal time the task
of reserving a tow truck can take, i.e., how long
the state ReserveTowTruck is allowed to remain ac-
tive, can be achieved by the goal solve maximize
ReserveTowTruck;. MiniZinc will give an an-
swer ReserveTowTruck = 40, which is actually
the maximal time for this state to be active, since oth-
erwise it would not be possible to hold Running < 60.
Another example would be to calculate the maximal
active time of OrderGarage by solve maximize
OrderGarage;, which reveals that in this design, or-
dering a garage is allowed to take 25 seconds at most
(since otherwise OrderTruckAndCar would not start in
time).

5. Related Work

Model-driven performance engineering has been
investigate by quite a few researcher. Process Alge-
bra and Markov Chains are used in PEPA [8]. Perfor-
mance of component-based software systems is consid-
ered by [3], just to name two examples. An overview is
give in [5].

Concentrating on the UML, modeling time require-
ments is standardized in MARTE [7], which contains
a lot more elements than our modeling elements (see
Sect. 3). In fact, our modeling elements can be seen as
a small subset of those defined in MARTE. We plan to
adopt MARTE’s notation and extend the translation to
constraint system in order to analyse more complicated
requirements.

In the UML [6], part of the semantics of state
machines is left unspecified intentionally as variation
points. The runtime model of this paper is based on
that defined in Hugo/RT [4], which provides means for
model checking UML state machines with time infor-
mation.

Deriving a constraint system out of UML state ma-
chines to check the viability of its performance require-
ments and deducting new requirements is to the author’s
best knowledge a novel contribution of this paper. The
latter may be particularly valuable in practical software
development.

6. Conclusions and Future Work

We have presented a concept of constructing a con-
straint system out of a UML state machine with perfor-
mance requirements. The constraint system can be used
to check the requirements’ viability, and also to deduce
requirements that are not known at first. These require-
ments may be of important when the state machine is
implemented by code.

As future work, we plan to extend this approach
to handle more involved state machines, in particular
those including cycles. Tool support to automate this
approach is also planned.

References

[1] Krzysztof Apt. Principles of Contraint Programming.
Cambridge University Press, 2009.

[2] Doron Drusinsky. Modeling and Verification Using UML
Statecharts. Elsevier, 2006.

[3] Lucia Happe, Barbora Buhnova, and Ralf H. Reussner.
Stateful component-based performance models. Softw.
Syst. Model., 13(4):1319-1343, 2014.

[4] Alexander Knapp, Stephan Merz, and Christopher Rauh.
Model checking - timed UML state machines and collab-
orations. In Werner Damm and Ernst-Riidiger Olderog,
editors, Formal Techniques in Real-Time and Fault-
Tolerant Systems, 7th International Symposium, FTRTFT
2002, Co-sponsored by IFIP WG 2.2, Oldenburg, Ger-
many, September 9-12, 2002, Proceedings, volume 2469
of Lecture Notes in Computer Science, pages 395-416.
Springer, 2002.

(5]

(6]

(7]

(8]

(9]

Manoj Nambiar, Ajay Kattepur, Gopal Bhaskaran, Rekha
Singhal, and Subhasri Duttagupta. Model Driven Soft-
ware Performance Engineering: Current Challenges and
Way Ahead. SIGMETRICS Perform. Evaluation Rev.,
43(4):53-62, 2016.

OMG. Unified Modeling Language, Version 2.5.1. Spec-
ification, Object Management Group, 2017. https://
www.omg.org/spec/UML/2.5.1/PDF, Accessed
on 2025-05-31.

OMG. UML Profile for MARTE: Modeling and Analy-
sis of Real-Time Embedded Systems. Specification, Ob-
ject Management Group, 2024. https://www.omg.
org/spec/MARTE/1.3/PDF, Accessed on 2025-05-
31

Mirco Tribastone, Adam Duguid, and Stephen Gilmore.
The PEPA eclipse plugin. SIGMETRICS Perform. Eval.
Rev., 36(4):28-33, 2009.

Martin Wirsing, Allan Clark, Stephen Gilmore,
Matthias M. Holzl, Alexander Knapp, Nora Koch,
and Andreas Schroeder. Semantic-Based Development
of Service-Oriented Systems. In Elie Najm, Jean-
Francois Pradat-Peyre, and Véronique Donzeau-Gouge,
editors, Proc. 26™ IFIP WG 6.1 Int. Conf. FORTE 06,
volume 4229 of Lect. Notes Comp. Sci., pages 24-45.
Springer, 2006.

